
Disrupt and Interrupt in MSC�
Possibilities and Problems

Th� Cobben� A� Engels
Eindhoven University of Technology�
P�O� Box ���� NL����� MB Eindhoven� The Netherlands�
engels�win�tue�nl

Abstract

Disrupt and interrupt are a possible extension of the MSC language� However� such an extension is
not without risks� Before it can be done� there must be a decision about the semantics that are used to
implement it� and even if that is going to be done� they might well have unwanted consequences� In this
paper we show the most important choices in implementing these constructs� propose a semantics and
show a few of the problems that disrupt and interrupt might cause�

Keywords

MSC� disrupt� interrupt� language extensions� semantics

� Introduction

The language of MSC �Message Sequence Chart� has been extended with various operators recently ����
and semantics for these have been proposed ���� However� a number of additional expansions for the
language have already been proposed� and might be introduced in the next version of the language�
which is to be accepted in the year ����� Two of these are disrupt and interrupt� Our opinion is that the
semantics of a new construct should be well thought out before it is added to the language� For disrupt
and interrupt this paper attempts to make such a pre	introductory semantic overview� We will show the
most important of the many choices that have to be made� and will show some of the problems that
might occur if these operators are introduced�

We feel that� in general� it is a bad thing to let the language grow too fast or too large� The MSC
��
language has not been thoroughly researched� It would be better� in our opinion� to have a solid� stabilized
semantics for the existing language� and if possible also for the proposed extensions� before the language
is extended� There are other reasons for restraint in the adoption of new features as well
 If features are
introduced too quickly� tool builders will have problems keeping up� having too many features runs the
risk of groups of users using only subsets of the language� thus diminishing the advantage that using one
single languages has� Another problem is that a large number of features greatly increases the chance
that unforeseen interactions between them lead to unwanted or unexpected behaviour�

We do not intend to claim that additions to the language have to be avoided at all costs� Far from
that� some additions are certainly useful� and not having any innovation whatsoever will be even more
certain to kill the language
s applicability than a too generous addition of new features would� However�
new features should only be introduced when there is a wish for inclusion by a large number of users�
and a well	de�ned semantics for it�

Even though disrupt and interrupt are much wanted by a number of users� there does not seem
to be a consensus about their exact meaning� Intuitively� interrupt means something like 
while doing
something� wait for a while to do something else� then do the �rst thing again
� Likewise� disrupt is
something like 
stop doing something to do something else instead
� However� from these intuitions many
di�erent implementations can be� and in fact have been� created� There are a large number of choices to
be made� and each of them will in�uence what the meaning of disrupt and interrupt in MSC will be� All
such choices have to be made in a unique way� although this may well mean that some� or even many�



users will not have 
their
 interrupt or disrupt in the language� One could argue that the popularity of
disrupt and interrupt might thus be smaller than it seems� In this paper we will show a few of the most
important choices to be made�

��� Acknowledgments

We would like to thank Sjouke Mauw� Michel Reniers� Loe Feijs and Jos Beaten for their support�
both technical and editorial� in compiling this document�

� Syntax

If disrupt and interrupt would be included in the language� there would not only be a need for a
semantics� but for a syntax as well� These two subjects are of course not independent� Semantics that �t
well with a certain syntax can be clumsy or illogical when combined with another syntax� and vice versa�

The main distinction here is between local and global interrupt �or disrupt�� The di�erence here is the
period during which the disrupt or interrupt can take place� In a local interrupt or disrupt� the disrupt
or interrupt can only take place at a single point in time� while a global interrupt or disrupt can do so at
any time during a given period�

We would like to stay as close as possible to the existing MSC syntax� so we will choose to adapt a
construct that is already in the language� The most logical choice is of course using inline expressions�
This leads to a possible syntax as shown in Figure ��

In Figure � we see examples for both local and global syntax� In the left a local interrupt is displayed�
When all instances are at the point in time just before the interrupt� the main line of �ow �presented by
the part of the MSC outside the inline expression� can be interrupted if� and only if� all instances �at this
case two� are at the point in time just before it�

int

server client

k

m’

m

a

int

server client

a

k

m

m’

Figure �
 Proposed syntax for �left� local and �right� global interrupt

The right MSC shows our proposed syntax for interrupt� would the global variant be chosen� As it is
important here to specify at which times an interrupt is possible� we now have a two	component inline
expression� The lower part is equal in function to the inline expression in the left example� giving the
interrupting sequence� The interrupt can take place at any time that all instances are somewhere in the
time described by the upper part of the expression�

Looking more precisely at what happens in the local case� we �nd that the MSC can in fact have only
two essentially di�erent behaviours


� Not doing the interrupt�

� Doing the interrupt� and doing it at exactly at the time given�



But that is a semantics we already have� The opt	construct has exactly this same meaning 	 when
something is placed in an 
optional
 inline expression it can either be done at that precise moment� or
not at all� Likewise a local disrupt could be replaced by an 
exception
�

Such an equality has advantages and disadvantages� The advantage is� that a semantics is easily
found� and will cause no problems with the rest of the language� or at least no problems that were not
already there� The disadvantage is� that adding such a disrupt or interrupt will not give any added
functionality� That way� the language would be made larger without making it any more powerful� As
enlargening the language is on itself undesirable� although often necessary� such extensions should be
avoided as much as possible�

Because local interrupt and disrupt are easily implemented semantically� but global interrupt and
disrupt are not� we will take a look at the semantics of the latter in the following two sections�

� Semantics

��� Semantic choices

In the global semantics of disrupt and interrupt a number of other decisions have to be made� Each
of these will in�uence the resulting semantics� We see at least the following


�� Can an interrupt take place only once� or any number of times�

�� In the second case� can the system be interrupted more that once between any two actions�

�� If yes� can one interrupt interrupt the other�

�� Can an interrupt or disrupt take place before the �rst and�or after the last action of what is
interrupted�

�� Does an interrupt or disrupt all instances at the same time� or is it enough that all instances are
interrupted or disrupted at some time� This point will be explained in more detail below� as it is
an important choice� and the most obvious answer might well be the wrong one�

The last point above deserves some extra discussion� At �rst thought it might seem that the �rst
interpretation is more natural 	 an interrupt or disrupt should work on the whole system� or at least on
all instances on which it is speci�ed� at once� However� when we look at a quasi	practical example� this
might not be as obvious� See for example Figure �� It models a Telnet	protocol
 The server sends two
�packets of� messages to the client� The client can check whether the server is still alive by sending an
ayt	signal �
are you there�
�� to which the server answers by saying 
yes
�

Now if we regard the interrupt as interrupting all instances at once� then the sending of the ayt	
message will block the action of the server� However� how is the server in a practical case to know that
the ayt has been sent� It only notices this upon its receipt� so it is logical to assume it will not be
blocked before that� Likewise� the server does not know when the 
yes
 is received� only when it is sent�
Thus letting the server be interrupted during all of the period leads to some possibly unwanted extra
causalities� The more logical choice might be to let each process be interrupted separately� that is� each
process has to do the interrupting actions at some point without doing anything else in between� but
they do not have to do it all at the same time� When one would choose to have all instances interrupted
or disrupted at the same time� one would in fact introduce synchronization points� which are contrary to
the nature of MSC as it has been practiced until now�

For the other questions our prefered answers are as shown below� However� we do not feel very
strongly about these questions� and if it appears that other choices would be closer to the wishes of the
users� they are the ones whose opinions have to prevail�

�� Any number of interrupts�

�� More than one interrupt between two events possible�

�� No interrupts interrupting interrupts�

�� Interrupts and disrupts possible at the given times�



int

server client

m1

m2

ayt

yes

Figure �
 Example interrupt MSC
 
Are you there
	protocol

��� Semantics

Under the choices given in the last section we will try to create an operational semantics for the for the
disrupt and interrupt operators� The o�cial semantics for MSC
�� ��� was made in process algebra ����
but the new semantics for MSC
�� ��� for a large part are made operationally only� In a preliminary
version of this paper ��� we have already given the semantics for the case that disrupts and interrupts
happen simultaneously�

We will de�ne operators � and I to denote the interrupt and disrupt respectively� That is� x � y is 
x
�possibly� interrupted by y
 and x I y 
x �possibly� disrupted by y
�

When could x I y do an action a� Well� there are in fact two possibilities
 Either x does the action�
or y does it� In the �rst case� the resulting expression can still be disrupted� In the second case� all
instances� except the one on which a takes place do not have to have been disrupted yet� They have to
be disrupted at some time� but that time can be somewhere in the future� and upto that point can still
do actions of x� To describe this situation we introduce the forced disrupt� jI� xjI y can do x� but must
at some time in the future be disrupted by y� However� this is not enough yet
 The action of y that has
already been taken forbids any actions on the same instance of x to be taken� That is� some events of x
may be done before being disrupted� but others have already been disrupted� Therefore we add to the
forced disrupt a set of instances S that have already been disrupted� xjIS y can now do any action from
y �provided y could do it�� but actions from x only if they happen on an instance not in S� We will be
giving operational semantics for both I and jI� although it would be possible to make the semantics
without using I� as it can be eliminated through the equation x I y � xjI� y � x�

For the interrupt � we also de�ne such a forced interrupt j�� but in this case we cannot get away with
re	de�ning the interrupt� as we need to keep the possibilities of further interrupts�

We have to check the behaviour of our operators for three operational modi�ers
 x �� which is true i�

x can terminate� x
a
��� which gives the result of doing an a on x� and x

a

����� which gives the result of x
permitting a� The latter is used when an action that� in the semantic description of the MSC� is after x�
can happen before x despite of that� In this case� only those parts of x remain that do not contain any
action on the same instance as the 
allowed
 action� Any trace of x that would contain such an action is
removed�

First termination� x I y can terminate in two ways
 Either x terminates� or y disrupts x and then



terminates without doing any action� For xjIS y to terminate it is necessary and su�cient for y to
terminate� while x � y can terminate by just x terminating� Finally� for xj�S y to terminate� both x must
be ready and y must have no interrupting actions left� so xj�S y only terminates if both x and y terminate�
Thus


x �

x I y �

y �

xjIS y �

x �

x � y �

x �� y �

xj�S y �

y �

x I y �

Then doing a step� When could an action� a� be taken by x I y� There are in fact two possibilities

either x takes the step� after which a disrupt of course could still take place� or y disrupts� and takes the
step� In the second case� we would get into a forced disrupt situation� where the instance on which a

took place� which is denoted I�a� is already disrupted�
In a forced disrupt x IS y x could only take the action a if the instance on which a takes place was

not already disrupted� that is� if I�a� �� S� y can of course always occur� and if it does then necessarily
its instance must be disrupted as well�

With the interrupt x � y we again see two possibilities� Either the action can be done by x� and
nothing particularly shocking happens� or it can be done by y� In the latter case we get into a forced
interrupt again� However� we will have to keep the 
old
 interrupt as well� because x could be interrupted
a second time�

xj�S y is the most di�cult one in this aspect� x can do the step if x �� S� but it can also do it if y
allows a� This is� because in this case the instance on which x takes place has done all it has to do� so it
is not interrupted anymore� and can do steps from the main execution �x� again� Steps from y work just
like the former cases�

There is another complicating factor here
 We can have just one possible step for a given action from
a given expression� because all our choices are deterministic� Thus when both x and y can do a given
step� we have to include a special case� Taken together� this leads to


x
a
�� x�� y �

a
��

x I y
a
�� x� I y

x
a
�� x�� y �

a
��� I�a� �� S

xjIS y
a
�� x�jIS y

y
a
�� y�� x �

a
��

x I y
a
�� xjIfI�a�g y�

y
a
�� y�� x �

a
��

x I y
a
�� xjIS�fI�a�g y�

x
a
�� x�� y

a
�� y�

x I y
a
�� x� I y � xjIfI�a�g y�

x
a
�� x�� y

a
�� y�� I�a� �� S

xjIS y
a
�� x�jIS y � xjIS�fI�a�g y�

x
a
��� y

a
�� y�� I�a� � S

xjIS y
a
�� xjIS y�



x
a
�� x�� y �

a
��

x � y
a
�� x� � y

x
a
�� x�� I�a� �� S

xj�S y
a
�� x�j�S y

x
a
�� x�� I�a� � S� y

a

���� y��

xj�S y
a
�� x�j�S y��

y
a
�� y�� x �

a
��

x � y
a
�� �xj�S y�� � y

y
a
�� y�� x �

a
��

xj�S y
a
�� xj�S�fI�a�g y�

x
a
�� x�� y

a
�� y�

x � y
a
�� x� � y � �x � y�j�fI�a�g y�

x
a
�� x�� y

a
�� y�� I�a� �� S

xj�S y
a
�� x�j�S y � xj�S�fI�a�g y�

x
a
�� x�� y

a
�� y�� I�a� � S� y �

a

����

xj�S y
a
�� xj�S y�

x
a
�� x�� y

a
�� y�� I�a� � S� y

a

���� y��

xj�S y
a
�� x�j�S y�� � xj�S y�

Finally the permission relation� This relation has been introduced in the semantics of MSC to describe
the possibility that in the expressio x � y events of y can go before events of x� However� this can only be
done if no events on x are on the same instance as the event taking place� or are otherwise forced to go
�rst� This can depend on choices that are made within x� In such a case those choices that would have
made the event taking place impossible are subsequently disallowed� Thus we get the relation x ���� x��
which denotes that x by permitting an event from another �later� term is reduced to x��

For x I y this immediately leads to problems� There are two possibilities here
 Either x has permitted
the event� or y has permitted it� However� in the second case� those events of x that would have permitted
it� can still take place� That is� x may perhaps not take place in full� but it can still do those actions
that are not forbidden by the event just having been allowed� This is not a simple removal of choices as
it was with the permission relation for other MSC operators� Here those parts of x that would normally
be disallowed by the permission of the events can still take place upto the place where the permission
would actually be impossible�

To see how we can deal with this� it is good to look at the forced disrupt xjIS y� Here� in order for
an event a to be permitted� it necessarily has to be permitted by y� On the other hand� whether or not
x permits it is not interesting 	 any beginning of a trace in x can happen as long as it does not contain
any events that are disallowed by the permission of a� that is� as long as it does not contain any events
on the same instance I�a�� independent of whether or not they are part of a complete trace that would
have allowed a� Thus we see that� if y permits an event am� changing into y��� xjIS y permits that event�
and changes into xjIS�fI�a�g y��� This looks strange� as this is independent of whether or not x permits
a� The reason is that x cannot terminate anyway� as it will be interrupted by y at some time� Because
of this it does not matter whether x� or even the trace taken� actually permits a� as long as that part of
the trace that is actually taken does so� The SOS	rules for permission by x I y now follow through the
equality x I y � x� xjI� y�

For x�y to permit a it su�ces that x does so� If y does not allow a� the process cannot be interrupted
anymore� if it does it still can� xj�S y� �nally� can permit an event only if both x and y do so� Note that
it does not matter in this case whether or not I�a� is added to S� as all events on I�a� are 
sieved out

by the permission of a anyway� This leads to the following




x
a

���� x��� y �
a

����

x I y
a

���� x��

x �
a

����� y
a

���� y��

x I y
a

���� xjIfI�a�g y��

y
a

���� y��

xjIS y
a

���� xjIX�fI�a�g y��

x
a

���� x��� y
a

���� y��

x I y
a

���� x�� � jIfI�a�g y��

x
a

���� x��� y �
a

����

x � y
a

���� x��

x
a

���� x��� y
a

���� y��

x � y
a

���� x�� � y��

x
a

���� x��� y
a

���� y��

x �S y
a

���� x�� �S y��

� Problems in the Semantics

One thing is obvious from the shown semantics
 They are complicated� This is a bad point� as it
increases the chance that people will write down an MSC that semantically has a meaning di�erent
from what they intend� Another point is that interrupt and disrupt may well not have certain desirable
properties in their semantics� such as strati�ability ���� This kind of properties may not cause worries to
most users� but not having them will mean that the semantics are much harder to understand from a
theoretical point of view�

We see a number of other problems as well� but many of those are� in some form or other� also present
in the present semantics of MSC
��� Here we will mention a few�

First� because a message could be disrupted after it is sent but before it is received� when it is sent�
we do not know whether it will be received or not� That way� an MSC could end its behaviour while
there are still unreceived messages out�

Secondly� certain unwanted behaviours could enter an MSC in unexpected ways� Take for example
the MSC in Figure �� The choice whether or not to disrupt the transmission of m to transmit m� seems
to be made by the instance to the right� but if the left one does local action a suddenly the right one
cannot choose to do m� anymore� Thus a seemingly local choice ��� suddenly appears to be non	local�
The same would be the case if the disrupt would be an interrupt� of course�

Another strange case is shown in Figure �� There seems to be nothing strange about this MSC� but
there is a hidden message overtaking here� Semantically in this MSC the message m can be overtaken
by m�� or even m� can be overtaken by m� Now� in some cases this might be logical� but in others it is
very illogical� for example if the medium between the two instances works as a FIFO	bu�er ����

When disrupt and interrupt are combined with gates� we get into really bizarre situations� It is not
clear what the semantics of an MSC like the one in Figure � are� or even what they should be�

In all these cases we run the risk that users write down an MSC which according to the o�cial
semantics has a meaning that di�ers from the intended one�

� Conclusions

Interrupt and disrupt can be introduced into MSC in various ways� These choices have to be made
very carefully� because a language construct that is not understood in the same way by all users and
other people concerned will cause many more problems than it solves� Restriction in the inclusion of new
features is advisable from a more general point of view too�



int m

m’

a

Figure �
 Example of unexpected non	local choice

If interrupt and disrupt are indeed to be included in the language� the �rst choice is whether a local
or a global interrupt is taken� A local interrupt has the advantage of being semantically simple and easily
understood� but on the other hand it does not really add anything to the language� so one could say it
is nothing but syntactic sugar� A global interrupt on the other hand is semantically quite complicated�
which can lead to unclarities or counter	intuitive results� There are also a number of additional choices
to be made� Although adding interrupt and disrupt to MSC is certainly possible� their usefulness has to
be doubted�

� �

� REFERENCES

��� ITU	TS� Message Sequence Chart �MSC�� Recommendation Z����� ITU	TS� Geneva� May �����

��� S� Mauw J�M�T� Cobben� A� Engels and M�A� Reniers� Formal semantics of message sequence charts�
Technical Report CSR ��	��� Eindhoven University of Technology� ����� to appear�

��� ITU	TS� Algebraic semantic of Message Sequence Charts� Recommendation Z���� Annex B� ITU	TS�
Geneva� �����

��� S� Mauw and M�A� Reniers� An algebraic semantics of basic Message Sequence Charts� The Computer

Journal� �����
�������� �����

��� Th� Cobben and A� Engels� Disrupt and interrupt in MSC� internal document TD	L��� ITU� �����

��� M�A� Reniers� �title to be announced�� Master
s thesis� Eindhoven University of Technology� �����
to appear�

��� Han�ene Ben	Abdallah and Stefan Leue� Syntactic detection of process divergence and non	local choice
in Message Sequence Charts� In Ed Brinksma� editor� Tools and Algorithms for the Construction and

Analysis of Systems� number ���� in Lecture Notes on Computer Science� pages �������� Springer
Verlag� �����

��� A� Engels� S� Mauw� and M�A� Reniers� A hierarchy of communication models for Message Sequence
Charts� In T� Mizuno� N� Shiratori� T� Higashino� and A� Togashi� editors� Formal Description

Techniques and Protocol Speci�cation� Testing and Veri�cation� Proceedings of FORTE X and PSTV

XVII ���� pages ������ Chapman � Hall� �����



int m

m’

Figure �
 Example of unexpected message overtaking

int m

m’

m’ g

h

Figure �
 MSC with Interrupt and gates


