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Abstract

Based on the TTU-T Recommendation Z.100 [1], also known as SDIL-92, we define in [2] a formal
semantic model of the dynamic properties of Basic SDL in terms of an Abstract State Machine (ASM).
More precisely, we use the concept of multi-agent real-time ASM [3] as a semantic platform on top of
which we construct our abstract mathematical definition. The resulting interpretation model is not
only mathematically precise but also reflects the common understanding of SDL (e.g. as presented
in the literature [4, 5, 6]) in a direct and intuitive manner; it provides a concise and understandable
representation of the complete dynamic semantics of Basic SDL. Moreover, the model can easily be
extended and modified—a particularly important aspect for an evolving technical standard.
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1 INTRODUCTION

Abstract State Machines (ASMs) [T]—formerly called Evolving Algebras [8]—combine declarative concepts
of first-order logic with the abstract operational view of transition systems in a unifying framework for
mathematical modeling of discrete dynamic systems. The underlying computation model constitutes
a simple yet powerful semantic basis to deal with concurrent and reactive behaviour in a direct and
intuitive way; it naturally enables operational interpretations of high-level system specifications and
thereby facilitates machine-supported analysis and validation (e.g. through simulation) of the resulting
models.

Numerous ASM applications (see for instance the annotated ASM bibliography [9]) to real-life
systems engineering problems—in particular, formal semantics of programming languages, modeling
languages and protocols—contributed to establish general abstraction principles needed to cope with
the complexity of large systems [10].1 In contrast to many traditional formal methods with a monolithic
character, the ASM method is open to be combined with other (e.g. application domain specific)
modeling techniques, thus providing additional flexibility.

Based on [2], we present here a formal semantic model of Basic SDL according to the ITU-T Recom-
mendation Z.100 [1], also known as SDL-92. More precisely, we focus on the dynamic semantics of Basic
SDL, which we describe in terms of an abstract interpretation model using the concept of multi-agent
real-time ASM as a formal basis. The resulting description is intended to be a first step towards a for-
mal documentation of complete SDL which is not only mathematically precise but does also reflect the
common understanding of SDL (as presented in the literature [4, 5, 6]) in a direct and intuitive manner.

Aiming at a coherent and consistent embedding of a formal semantic model into Z.100, it is important
to clearly separate the concerns of specification and verification. There are good pragmatic reasons (see
Sect. 4 of [10]) to avoid in a standardization context the additional overhead of formalisms which are
mainly intended to support mechanization of verifications.

IFor a comprehensive overview on ASM applications, introductory material and supporting tools see also the following
two URLs: http://www.uni-paderborn.de/cs/asm/ and http://www.eecs.umich.edu/gasm/.



It is probably worth noticing that the meta-modeling concept we propose for SDL was already em-
ployed in our previous work [11] on a formal semantics of the IEEE hardware description language VHDL
[12]. The resulting semantic model of complete VHDL’93 is not only the most comprehensive model of
VHDL known so far, but is at the same time also considered to be a particular concise and understandable
description of this fairly complex modeling language.

Formal Semantics of SDL 7.100 does already come together with a complete formal model of SDL
based on a combination of Meta-TV and CSP (Annex F to [1]). However, the result is not satisfying as
the natural language descriptions of Z.100 take precedence over the formal semantics. One reason why
7.100 does not rely on its own formal model is probably the fact that this model is hardly usable because
of its size: the entire formal definition is more than 500 pages.

In fact, there is a considerable variety of formal semantic models of SDL which have been developed
using various formal methods. Among the approaches which are mainly concerned with analysis and
verification of SDL specifications are the following. In [13], Bergstra and Middleburg define a process
algebra semantics of a restricted version of Basic SDL, which they call ¢SDL. Broy [14], Holz and Stglen
[15] use the stream processing functions of FOCUS to model subsets of SDL. Fischer and Dimitrov
propose extended Petri nets as a formal basis to verify SDL protocol specifications [16]. Rinderspacher
employs a term-rewriting system based modeling concept [17]. Some of these approaches consider only
a relatively small subset of SDL ignoring certain essential features (like dynamic process creation or
basic structuring concepts). An approach aiming at a more comprehensive semantic model of SDI was
proposed by Fischer, Lau and Prinz through their definition of BSDL (Base SDL) using Object-7 [18, 19].

This paper is structured as follows. Section 2 briefly explains the underlying ASM concepts and related
notions as far as these are required here. Section 3 introduces our formal semantic model of Basic SDL in
terms of an abstract SDL machine. Besides the encoding of SDL objects in the abstract machine model,
the particular focus here is on the behaviour of channels, operations on signals and timer operations. To
stress the practical relevance of the approach, Sect. j/ outlines the role of tools for machine-based analysis
and execution of ASM models. Finally, Sect. 5 contains the conclusions.

2 ABSTRACT STATE MACHINES

In order to make the paper self-contained as far as possible, we briefly address in an informal style
some basic ASM concepts (Sect. 2.1), general abstraction principles (Sect.2.2) and the particular ASM
class (Sect.2.3) employed here. For a rigorous definition of the mathematical foundations of ASMs, we
refer however to [8, 7]—though it should be possible to get a sufficiently detailed understanding without
consulting the formal definition.

2.1 The Basic Model

An ASM M is defined over a given vocabulary T by its program P and its initial state Sy. The vocabulary
(or signature) 7 is a finite collection of function names and predicate names, each of a fixed arity. Names
in 7 may be marked as static indicating that they have a fixed interpretation regardless of the state of
M (whereas non-static names may have different interpretations in different states of M).

States States of M are variants of first-order structures. They contain functions but no relations (rather
they express relations as characteristic functions?). A state defines an interpretation of the names in 7
on the underlying base set of M.

Formally, all functions associated with a given state S of M are total functions on the base set. It
is nevertheless possible to imitate partial functions by marking “undefined” values using a distinguished
element undef, except for predicates. By definition, predicates may only have the values true or false.

Unary predicates have a special role: they represent sets, also called universes or domains®, and
thereby form many-sorted structures on top of elementary structures.

2The treatment of relations as Boolean-valued functions considerably simplifies the underlying computation model (with-
out loss of generality) by employing a uniform notion of local updates on structures.

8 A domain introduces a certain category of objects and may be completely abstract (not imposing any restrictions on
theses objects). Alternatively, objects may be assumed to have certain properties or to be in certain relations with other
objects. In the latter case, the properties and relations have to be stated separately through additional integrity constraints
to be associated with the domains.



Every state S of M has an infinite reserve representing additional resources as required to extend
domains dynamically. Intuitively, the reserve represents the outside world.

Programs P is defined in terms of transition rules specifying local updates on states. A transition rule
R consists of update instructions of the basic form

f(tl,...,tn) = to (77,20),

where f(t1,...,t,), to are terms over 7" identifying the location to be changed and the new value to be
assigned. The construction of complex transition rules out of basic update instructions is inductively
defined by means of ASM rule constructors as will be explained in the ASM model of SDL.

Computations Computations are modeled through (finite or infinite) runs of M as sequences of state
transitions of the form

Aso(P) o As(P) o Asy(P)

So S Se —

such that S;y; is obtained from S;, for ¢ > 0, by firing Ag,(P) on state S;, where Ag, (P) denotes the
update set computed by the program P of M on S;.

2.2 General Abstraction Principles

A key aspect in mathematical modeling of large systems is the ability to cope with complexity. The
concept of ASM thus comes together with general abstraction principles allowing a systematic analysis
and validation of relevant system properties at any desired abstraction level. This freedom of abstraction
in combination with the consequent use of information hiding and interface mechanisms considerably
simplifies the construction and the interpretation of abstract operational models. There are many 1llus-
trative examples (see the ASM applications cited in [9]) how the concept of stepwise refinement can be
utilized to obtain through a hierarchical organization and systematic structuring a significant reduction
in the complexity of ASM models.*

To obtain a reliable basis for establishing correctness of mathematical models, especially whether a
model is faithful to reality, the given context in which a model is to be defined is of particular interest.
With respect to the embedding of a system into its physical environment, it i1s therefore important to
clearly identify and properly state

e the underlying assumptions and constraints on the expected behaviour of the external environment;

e how external conditions and events (as associated with the environment) affect the transition be-
haviour of a system.

The ASM method provides various conceptual and expressive means effectively supporting an open
system view (in contrast to a closed world assumption where everything is included in the model). To
incorporate the semantic issues addressed above into the notion of ASM state and the conceptual frame-
work of expressing state changes as local transformations on structures, the following classification scheme
on ASM functions is employed.

Classification of ASM Functions Assume a given ASM M defined over a vocabulary 7. Names in
Y denote abstract mathematical representations of real-world objects, their properties and the relations
between these objects, as associated with a certain application domain. Depending on application domain
specific knowledge about the role or status of these objects (e.g. whether an object belongs to the system
or to the environment, how properties and relations may be affected by actions taking place within the
system or the environment etc.) one can classify the functions of M according to a general scheme.

e A static function never changes; the name of a static function does always have the same fixed
interpretation independent of the given state of M.

e A controlled function can be updated as specified by the ASM program; the name of a controlled
function may thus have different interpretations in different states of M.

4 A comprehensive treatment of the methodological background on ASM-based modeling, validation and verification of
complex systems can be found in [10].



e A monitored function represents a read-only function of the ASM program; though it must not be
updated by M itself, it may be altered by the external environment. Accordingly, the name of a
monitored function may have different interpretations in different states of M.

Controlled functions and monitored functions represent non-static mathematical objects and are there-
fore also called dynamic functions.

Finally, there is a more subtle class of functions in addition to the ones described above. To model
interactions between a system and its environment, it is sometimes required to have functions which are
shared between M and the environment, i.e. they are partly controlled and partly monitored at the same
time. Those functions are called interaction functions. A reasonable integrity constraint for interaction
functions is that no interference with respect to mutually updated locations must occur.

2.3 Multi-Agent Real-Time ASMs

Telecommunication systems are characterized by their concurrent and reactive nature; their operation
increasingly depends on embedded control functions and as such they are subject to external timing
constraints [4]. A suitable mathematical basis for modeling the operational semantics of SDL, including
timing behaviour, is provided by the concept of multi-agent real-time ASM outlined below.

Multi-Agent ASMs A multi-agent ASM M consists of multiple autonomous agents cooperatively
performing concurrent computations of M. Agents communicate asynchronously through globally shared
states of M. The behaviour of an agent a is defined by its program as represented by the module P(a).
Assuming a statically defined set of modules, a unary dynamic function Mod assigns to each of the agents
one of these modules.’

A special nullary function Selfis used as a self reference (i.e. Self returns different values when called
by different agents). Fach agent a has its own partial view View,(S) on a global state S of M on which
it fires the transition rules in P(a) — see Fig. 1. The underlying semantic model ensures (by restricting
admissible non-determinism in runs of M) that the order in which the agents perform their operations
is always such that no conflicts arise (for details see the definition of partially ordered runs in [8]).

ASM Agents ASM Program

Self

Global State S Modules

Figure 1: ASM scheme with three agents and three modules

Real-Time ASMs Multi-agent ASMs with real-time behaviour are defined in [3]. This model is
adopted here with a corresponding notion of time. SDL uses the expression now to represent the global
system time, where the possible values of now are given by the predefined SDL sort Time®. Accordingly,
we introduce a nullary monitored function now taking values in a corresponding domain TIMFE

now: TIME, TIME C R.

By imposing additional constraints on the notion of run, namely the discreteness requirement defined
in [3] together with simple restrictions on how functions evolve, one obtains a restricted class of multi-
agent ASMs with agents performing instantaneous actions in continuous time (see also [2]). Tntuitively,
that means that an agent fires a rule as soon as the enabling condition expressed by the guard of the rule

5 Mod is called a dynamic function because it may have different interpretations in different states of M; the behaviour
of newly created agents can thus be defined at run time by updating Mod accordingly.
6 Time values are actually real numbers with restricted operations (see Appendix D to Z.100).



becomes true. Strictly speaking, one has to be more careful about the precise meaning of “immediate”
(as explained in [3]). Nevertheless, we can assume here that an agent which is enabled at time ¢ to fire a
certain rule actually fires the rule not later than ¢ 4+ ¢ (for some infinitely small ¢).

3 AN ABSTRACT SDI. MACHINE

Our mathematical model of the operational semantics of Basic SDL is defined in terms of a multi-agent
real-time ASM. We obtain an abstract interpretation model for Basic SDL at the level of basic objects
(like processes, signals, channels etc.) and elementary operations (such as signal transfer operations and
timer operations). To ensure that the resulting description is easily readable and understandable, our
abstract SDIL machine directly reflects the common view of SDL systems and also adopts the standard
terminology of SDL.”

For the construction of the abstract SDL machine assume to have states of a fixed vocabulary Yspy.
The names in Ysp;, denote various static/dynamic domains together with various static/dynamic func-
tions and predicates defined on them. Functions are regarded as partial functions, whereas predicates
are total. The default value of functions and predicates at locations not defined by the initial state of the
abstract machine model is undef respectively false.

The behaviour of SDL systems, including both functional aspects and timing aspects, is described
in terms of the behaviour of their active components, namely: processes, timers and delaying channels.
Thus there are three ASM modules—called Process_Module, Timer_Module and Channel_Module—to be
executed by a set of concurrently operating ASM agents, where one can identify a separate agent® with
each instance of a system process, each timer instance, and each delaying channel.

Hierarchical Structure The construction and the understanding of the formal model is considerably
simplified through its modular structure. In particular, the use of macros for defining subrules naturally
enables stepwise refinements leading through a hierarchy of abstraction levels.

For brevity, we focus here on the formalization of some typical SDL features exemplifying our modeling
approach and refer to [2] for further details.

3.1 ASM Representation of SDL Objects

For the purpose of illustrating how SDL objects and relations between these objects are encoded into ASM
states, the formalization of process instances, signal instances and delaying channels is detailed below. To
simplify matters, let CHANNFEL, PROCESS and SIGNAL be given sets abstractly representing channels,
process names and signal types as associated with an underlying SDL system specification.

Process Instances PId values of environment process instances must be distinguishable from PId val-
ues of system process instances. It is therefore assumed to have a set PID, the process instance identifiers,
consisting of two disjoint subsets, PID = PID;y,UPID.y,, where PIDgy, and PID,,, respectively identify
the process instances of the system and the environment.

The relation between process instances and process types is defined through the following function

procname :  PID — PROCESS.

Signal Instances Signal instances are elements of a dynamic domain SIGINST on which various
operations are defined: signame yields an element of SIGNAL; values yields an optional list of signal
values from a domain VALUEF, senderid and receiwerid refer to elements of PID; and path yields the path
information as an element of a static domain PATH.

7One may of course argue that there are alternative levels of abstraction which might be more adequate for dealing with
certain behavioural or structural aspects of SDL. Note that such questions are outside the scope of this paper; the purpose
here is to convince the SDL experts of the ability of the ASM approach to directly convert their intuitive understanding
of SDL into a formal semantic model which can be defined at any desired abstraction level with reasonable detail and
precision.

8Recall that the association of ASM agents to the modules they execute is defined by the function Mod (see Sect.2.3).



Additionally, an auxiliary function receivername defined on SIGINST is used to refer to receiver names;
when applied to some si € STGINST, the expression receivername(si) has the following meaning:

procname(recetverid(si)), if receiverid(si) € PID,y,
recetvername(si) = env, if receiverid(si) € PIDep,
undef, otherwise.

Input Buffers To each element of PID,,, a uniquely determined input buffer is assigned using a unary
dynamic function buffer,

buffer: PID — SIGINST*,

where SIGINST* denotes the set of all finite sequences of signal instances.

Delaying Channels For each path of a delaying SDI., channel there is a channel queue holding signals
which are presently in transit on this channel path. Channel queues are finite sequences of signal instances
as defined by a unary dynamic function

queue : CH_PATH — SIGINST*,

where CH_PATH refers to the set of channel paths. The function queue yields the result “undef” when
applied to a non-delaying channel.

Similarly, the elements of CH_PATH are associated with the delaying channels to which they belong
as expressed by a unary static function channel from CH_PATH to CHANNFEL. (Recall that delaying
channels are identified with channel agents.)

Figure 2 illustrates the representation scheme of delaying channels in the abstract SDI machine.

Channel Agent

channel(chp; )

Mod(x)
Chpl queue( chp;) X € CHANNEL
——— OO
—1o ©o9] channel(chp, ) Channel_Module
queue(chp, ) (;hp2 ]
(channel operations)

chp ' € CH_PATH

Figure 2: ASM representation of a bidirectional delaying channel

Signal Transfer The delaying behaviour of channels actually depends on the system context, e.g.
on the underlying communication network; as such it is outside the scope of an SDL system model.
Consequently, this behaviour is modeled in terms of an abstract predicate InTransit,

InTransit . SIGINST x CH_.PATH — BOOL.

The abstract meaning of InTransit is as one expects: InTransit(si, chp) holds for some signal instance
st € SIGINST and delaying channel path chp € CH_PATH 1ff

st 1s currently in transit on chp and has not yet reached its destination.

InTransit is a typical monitored predicate (see Sect.2.2). Trrespective of its non-deterministic nature,
there is a necessary integrity constraint on the predicate InTransit to ensure that signal transfer via

channels is reliable: the time interval delaying the transfer of a signal is indeterminate and non-constant
but finite.



3.2 Behaviour of Channels

The module Channel_Module consists of a single rule stating how channel agents deliver signal instances
to specified receivers. In each computation step a channel agent ¢ checks for each path chp such that
channel(chp) = ¢ whether there is a signal instance si ready to be delivered to its destination.

In the rule below, the selection of channel paths is specified by means of a do forall-construct. That
is, all chp in CH_PATH such that channel(chp) = Self are examined within one single step. If the auxiliary
predicate ReadyToDeliver holds on chp, the update operations stated by the subrule in the body of the
do forall-construct become effective. In other words, there are separately instantiated copies of this
subrule, one for each matching chp.

Depending on the location of the signal destination one can distinguish two cases: st is either appended
to the input buffer of some system process instance—as stated by DELIVERTOPROCESS(si), or it is
delivered to the environment env—as stated by DELIVERTOENV (si). Since the propagation of signals
within the external environment is outside the scope of the model captured by the definition of SDL,
DELIVERTOENV (s7) is consequently left abstract.

DELIVERSIGNALS
=do forall chp: CH_PATH(chp) and channel(chp) = Self
if ReadyToDeliver(chp) then
queue(chp) := tail(queue(chp))
let si = head(queue(chp)), r = receivername(si) in
if r = env then

DELIVERTOENV (s7)
else
DELIVERTOPROCESS (i, 7)
where
ReadyToDeliver(chp)

= 3dsi: SIGINST(si) A si = head(queue(chp)) A —~InTransit(si, chp)

DELIVERTOPROCESS(..) needs to distinguish whether the signal instance SInst is to be delivered to
an arbitrary process instance of the process instance set PName (i.e, if no receiver PId is defined) or to
a particular process instance as identified through its PId.

Now, it may of course happen that the specified process instance does not exist anymore when SInst
eventually arrives at the end of the communication path. Similarly, the nondeterministic choice does
not necessarily yield a definite result? (since all instances of PName may already have terminated their
execution). Tt is therefore to be checked prior to delivering SInst whether a valid receiver exists.

Whenever no receiver exists, 7.100 assumes (see Sect.2.7.4 of [1]) that the signal instance is dis-
carded!®. Tn our model there is however no need to discard SInst from SIGINST (what we could easily
do) as it will not be referred to any further.

DeLIVERTOPROCESS (SInst, PName)
= let PId = receiverid(SInst) in
if Pld = undef then
choose p: PID(p) and procname(p) = receivername(SInst)

buffer(p) := buffer(p)™ (SInst)
else

if PID,ys(PId) then
buffer( PId) := buffer(PId)™ {SInst)

3.3 Behaviour of Timers

Recall that timer agents of the abstract SDI. machine are identified with timer instances of an underlying
SDL system. Their behaviour is defined by the rules of the Timer_Module. Similar to process instances

?Note that a choose-construct does not affect the ASM state if the underlying set is empty (i.e., in that case the subrule
in the body of the choose-construct is simply ignored — see [7]).

10Here arises an interesting question, which is not completely answered by the definitions of Z.100: does the fact that
the environment may continue to send signals to an SDL system even when no process instances are left mean that such a
system still has a behaviour?



and signal instances, timer instances are represented as elements of dynamic domain TIMERINST. For
a given timer instance ¢ its expiration time is obtained as the value of a unary dynamic function expire,

expire : TIMERINST — TIME,

where expire(t) is set to undef each time ¢ expires.

The relationship between timer instances and the process instances to which they belong is expressed
by a corresponding mapping owner from TIMERINST to PID. To associate the timer signals in SIGINST
with the timer instances they originate from there 1s a mapping timer from SIGINST to TIMERINST.

A timer instance ¢ is said to be active (in accordance with the meaning of the SDI expression active)
if the following predicate holds on .

Active(t) =
ActiveTime(t) V ActiveSignal(t)
ActiveTime(t) =
TIMERINST(t) A expire(t) # undef
ActiveSignal(t) =
TIMERINST(t) A3 s € SIGINST : t = timer(s) A s in buffer(owner(t))

A timer agent ¢ watches the activities of owner(t), the related process agent, and becomes involved
only when owner(t) encounters a set or reset instruction. In the meantime, i.e. when no set or reset in-
struction is to be executed, ¢t merely checks whether 1t 1s currently active and the value of now is already
equal or greater than expire(t) in order to generate a timer signal.

In the definition of TIMEROPERATION below, an auxiliary predicate MyAction triggers the operations
of the timer agent. Tn case that MyAction holds on Self, Action is either set or reset (for brevity, the
formalization of MyAction and Action is not given here); otherwise, the value of now is checked against
the expiration time.

TIMEROPERATION
= if MyAction(Self) then
if Action = set then
let time = fst(Arg) in
SETEXPIRATION TIME (time)
DI1scARDTIMERSIGNAL
else
if Active(Self) then
expire(Self) := undef
DI1scARDTIMERSIGNAL

else
if ActiveTime(Self) A now > expire(Self) then
expire(Self) := undef
CREATETIMERSIGNAL

The value expressed by the unary function duration in the following rule is either “0” or a default

value derived from the timer definition!!.

SETEXPIRATION TIME( Time)
= if Twme = undef then

expire(Self) := now + duration(timername(Self))

elif Time < now then
expire(Self) := undef
CREATETIMERSIGNAL

else
expire(Self) := Time

For the definition of CREATETIMERSIGNAT, and DISCARD TIMERSIGNAL see [2].

11SDL allows to set a timer without explicitly specifying the expiration time; the resulting time value is then obtained
by adding a default duration to the current value of now. Furthermore, a timer may be set to a time value which is smaller
or equal to the value of now having the effect that the timer expires immediately (see Sect.2.8 of [1]).



4 ASM TOOL SUPPORT

For the purpose of using Abstract State Machines as a practical tool for mathematical modeling of complex
systems, especially in an industrial system design context, abstract models need to be implemented on
real machines. To provide supporting software tools, the ASM Workbench—a tool environment based on
the ASM Specification Language (ASM-SL) [20]—has been developed at Paderborn University (see also
[21]). The ASM Workbench offers various tools for machine-based analysis and simulation of executable
ASM models and in particular includes:

e a type checker implementing a typed version of ASMs,
e an interpreter for simulating high-level ASM specifications,

e a graphical user interface for controlling the simulation flow.

The purpose of ASM-SL is to include in the ASM language a set of predefined types (e.g. booleans,
integers, strings), generic mathematical structures (like tuples, lists, sets) and a few simple but powerful
constructions (such as freely generated types, case distinction, recursion etc.) which proved to be par-
ticularly useful in software specification. Such a model based approach, while being less abstract than
other techniques (like, for instance, algebraic specification), allows to model in a natural and concise way
a wide range of systems, and has the advantage that executable models are obtained by construction.
Moreover, the use of familiar notations coming from discrete mathematics and computer science guaran-
tees that specifications are easy to understand and easy to translate into other languages, for the purpose
of verification or implementation.

The current tool environment is mainly intended to support interactive development of formal
requirement specifications in early system design phases. Additional support for efficient prototyping
will soon be available through the compilation of executable ASM specifications into Java VM code. A
corresponding compiler is currently being developed in cooperation with the University of Tromsg.

Provided that those details which are left abstract in the ASM model of Basic SDL (this mainly
concerns interfaces to the external environment) are handled properly (e.g. by specifying them through
user inputs, external processes etc.), an executable version of this model can be produced with a reasonable
effort. Though there is not yet a concrete result, present investigations in this direction are promising.

5 CONCLUSIONS

Two significant observations concerning the modeling approach presented here can be summerized as
follows.

e The SDL view of distributed systems with real-time constraints and the semantic modeling concept
of multi-agent real-time ASM clearly coincide; essential properties of the underlying computation
models—namely, the notions of concurrency, reactivity and time as well as the notion of states—are
so tightly related that the common understanding of SDIL can directly be converted into a formal
semantic model avoiding any formalization overhead.

e Even without direct support of object-oriented features the resulting ASM model of the operational
semantics of Basic SDL is particularly concise, readable and understandable; furthermore, this
model can easily be extended and modified as required for an evolving technical standard. Beyond
the purpose addressed here, ASM models can be utilized for defining a bridging semantics in order
to combine SDL with other domain specific modeling languages.

An obvious way of extending the current model 1s to include the full structuring facilities of SDL.
Based on our experience with VHDL [11], which offers structuring concepts similar to block partitioning
in SDL, we can state that this does not cause any real problems.
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