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Abstract

We present an ongoing research activity concerned with measuring the effect of an increased level of formalization
in software development. Based on the experiences from a first experimental development, we discuss a number
of technical issues; in particular, problems connected to metrics based on error reports. First of all, what is an error?
Secondly, how should the error counting be integrated in the development process? Thirdly, any reasonable defi-
nition of error depends on a notion of satisfaction. Hence, we must address the question: what does it mean for a
specification or an implementation to satisfy a requirement imposed by a more high-level specification? Our an-
swers are so far only partly satisfactory.
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1. INTRODUCTION

The OECD Halden Reactor Project (HRP) is an international cooperative effort involving 20 countries and more
than 100 nuclear organizations. The research of the HRP is specialized towards improved safety in the design and
operation of nuclear power plants. The use of formal descriptions in software development, validation and verifi-
cation is an active research direction at the HRP. Earlier this research was specialized towards small safety critical
systems with very high reliability requirements. More recently, the scope has been extended to cover also other
kinds of software; in particular, distributed systems for plant control and supervision. HRP member organizations
have identified the need for this kind of research. They have also identified the need to know more about the prac-
tical consequences and effects of an increased level of formalization in software development. This paper describes
our attempts to tackle problems connected to the latter issue.

Arguments in favour of an increased level of formalization in software development can easily be formulated.
For example:

* Formalization of requirements raises questions whose answers may eliminate weaknesses and inconsistencies.

* Formal requirements are easier to analyse with respect to consistency, completeness and unintended effects
than informal ones.

e Formal requirements reduces the number of design errors because the developers obtain a better understanding
of what the requirements actually mean.

* Formalization allows errors to be identified early in the development process --- in the following we refer to
this argument as the “bugs discovered early” hypotheses.

* Formalization is a prerequisite for mechanized validation in the form of animation, exhaustive exploration and
mathematical reasoning.

* Formalization allows precise strategies for decomposition and design.

These arguments all sound reasonable, but are they valid in practise? And if so, are there other less desirable effects
of formalization? For example, does a higher level of formalization increase software development costs? These
questions are not easily answered. The HRP has recently initiated a research activity with the objective to address
this kind of issues.

This paper sums-up some preliminary experiences from this research activity; in particular, based on what we
learnt from an experimental development, it identifies and discusses problems connected to metrics based on error



reports:

e In order to report on errors we need a clear definition of what an error is. This definition must be such that it
does not force the alterations resulting from the kind of trial/failure experiments that is a desirable part of any
software development to be counted as errors. Moreover, this definition should not depend upon a software
process that does not mirror how software is developed in practise.

* Any definition of error is highly dependent on some notion of satisfaction: what does it mean that a specifica-
tion or implementation satisfies some requirement imposed by a more abstract specification? This notion of
satisfaction must be sufficiently liberal to allow software to be developed in a natural manner; it must be
clearly defined, and it must be expressed in such a way that it can be understood and used by ordinary system
engineers.

The paper is divided into six main sections: Section 2 describes our area of specialization --- the kind of systems,
specification techniques and tools we are interested in; Section 3 summarizes experiences from a first system de-
velopment; Section 4 discusses practical problems related to error reporting and the comparison of different kinds
of software developments; Section 5 draws some conclusions and describes future plans; in particular, what we
expect to achieve, and what we hope to achieve; Section 6 provides a list of references.

2. AREA OF INTEREST

There are many different kinds of formal techniques (FTs) intended to support software development. Since there
are also many different kinds of systems, this is hardly surprising. That there is no FT that is well-suited for the
description of all kinds of software systems is also quite obvious; after all, the required generality of such a uni-
versal FT would make it impossible to overview and use in a practical context. Hence, practical FTs are always
tuned towards particular application areas. For the very same reason, it seemed natural to specialize our research
activity to one particular application area, one particular kind of FT's, and one particular kind of tools.

We concentrate on systems in which interaction and communication is essential; the components may be dis-
tributed in space, but this is not a requirement: we also consider systems with only logical concurrency. The sys-
tems will typically be real-time and based on object-oriented technology.

We distinguish between three disjoint classes of FTs: semi-formal description techniques (SFDTs), formal de-
scription techniques (FDTs) and formal development methods (FDMs).

e The SFDTs are semi-formal in the sense that the syntax and semantics of specifications expressed in SFDT's
are not fully defined. Typical examples of SFDTs are diagrams for object-oriented modelling. Almost any
commercial software/hardware developer employs SFDTs in one form or another.

* The FDTs differ from the SFDTs in that the specifications expressed in FDTs have a well-defined syntax and,
in addition, a semantics captured by well-understood mathematical notations. Within the fields of telecommu-
nications and embedded systems FDTs already play an important commercial role.

* The FDMs differ from the FDTs in their support for the logical deduction of implementations from specifica-
tions. A FDM contains a FDT for specification purposes; this FDT is normally quite mathematical to allow
conventional mathematical and logical theories to be exploited in the step wise deduction of implementations.
FDMs have not yet received much industrial attention; moreover, it seems that if they are employed in an
industrial context, they are mainly used as FDTs.

We concentrate our research activities on FDTs; we will use SFDTs as a supplement when this falls natural; formal
verification of design steps in the style of FDMs will not be considered. The requirements capture will be based on
sequence charts (as, for example, in MSC [1] or UML [2]); the design will be based on communicating state ma-
chines (as, for example, in SDL [3] or Statecharts [4]); we will also use class-diagrams (as, for example, in OMT
[5] or UML).

The usefulness of FDTs in practical system development is highly dependent on adequate tool support. We will
use state-of-the-art CASE-tools supporting the whole development cycle. The CASE-tools should offer editors for
the chosen FTs, facilities for verification and validation, and complete code-generation from design to commercial
platforms.

We refer to [6] for a more detailed motivation for the specialization of our research activity. [7] compares elev-
en specification languages, including the ones mentioned above, in a more general setting.



3. EXPERIMENTAL DEVELOPMENT

We are not aware of convincing experimental evidence with respect to the effects of formalization. In the literature
there is not much to find on this subject. Two notable exceptions are [8], [9]. They report on small scale experi-
ments where conventional developments are related to developments based on FDMs. We briefly discuss their re-
sults in Section 5. Since we had little experience with this kind of experiments, we decided to start our
investigations by testing out the metrics and techniques for the collection of experimental data proposed by [8] in
areal system development at the HRP. [8] is concerned with FDMs like VDM [10] and B [11]. However, the pro-
posals of [8] with respect to metrics and data collection carry over to our application area, straightforwardly. These
proposals of [8] are summed up below:

* To compare a formal development process with a conventional one, four metrics are proposed:

Number of errors per thousand lines of code found during unit tests and integration tests.
Number of errors per thousand lines of code found during validation test.

Number of errors per thousand lines of code found during customer use.

Person months of effort per thousand lines of code produced.

* To compare the relative effectiveness of the various stages of the formal development process, and thereby, for
example, try to validate the “bugs discovered early” hypotheses, errors were registered throughout the devel-
opment process; for each error, it was recorded at which stage/activity the error was introduced and at which
stage/activity it was discovered.

* The notion of error is defined as follows: an error is found when a change is required to a design decision
made at an earlier development stage; a design made and corrected within the same stage is not considered as
an error.

* The developments were based on a waterfall process.

Our initial system development to test of these proposals of [8] was carried out within the frame of another HRP
research activity [12] aiming at the development of an analytic design methodology supported by a computerized
tool, the so-called FAME tool, with the objective to determine the optimal task allocation between man/machine
in the control of advanced technical processes. Our task was to design a communication manager for this tool ---
referred to as the FCM in the following.

Five persons were involved in the FCM development:

* Two research scientists who worked out the informal system requirements and thereafter were available for
questions and discussions concerning the formalisation, design and implementation of these requirements.

* Two systems engineers responsible for the actual development.

* One FT expert who gave advice on the use and integration of FTs, and supervised the collection of experimen-
tal data.

With the exception of the latter, neither of the participants had earlier experience in the use of FTs.
The following FTs were employed:

* The use-case diagrams of UML, the sequence charts of MSC --- including hierarchical ones, and OMT class-
diagrams to capture the abstract requirements.

* SDL with embedded C to describe the design.

The tool support was SDT (Telelogic); we employed the SDT facilities for editing, animation, exhaustive explo-
ration and code-generation. The FCM development was based on a waterfall process. This was in accordance with
[8] and also consistent with the software quality assurance manual at the HRP [13].

As already mentioned, the objective with the FCM development was to test out the proposals of [8] with respect
to metrics and data collection in a real system development. Thereby we hoped to gain a better understanding of
their suitability and usefulness in a practical context. In this respect, the FCM development was a success. As ex-
plained in Section 4, we identified several problem areas.

The experimental data gained from the FCM development is not very valuable as such. First of all, we devel-
oped a prototype that is to be used in a scientific experiment; it was therefore not tested out and will not be main-
tained in the same way as a commercial product. Secondly, a very large percentage of the person hours was
invested in learning to use the FTs and, in particular, SDT. We will therefore not report on the experimental data
here. However, the system development was successfully completed and resulted in about 10 000 lines of C-code
(adjusted number correcting for automatic code generation).



4. DISCUSSION

To investigate the effects of formalization by experimental means is a very challenging task. This we new already
at start up. However, the FCM development made this even clearer; in particular, it highlighted a number of prob-
lem areas. Some very important ones are discussed below.

4.1 Measuring the right thing

In order to compare formal and conventional development processes, great care must be taken to ensure that we
measure the effects of formalization, and not the effects of something else. For example, in the FCM development,
the formal and informal requirements specification were validated against each other based on a review were all
involved parties were present and forced to decide whether they accepted the requirements specifications as correct
or not. In those cases where a mistake was identified, the involved parties were required to agree on how it should
be corrected. This proved very efficient and considerably improved both the informal and the formal requirements
specification. Such a review would of course be helpful also in a conventional development, although there would
then be only an informal requirements specification. Hence, in order to compare a formal development process
with such a review at the requirements level with a conventional one with respect to the effects of formalization,
it seems reasonable that also the conventional process has such an activity.

Of course, such a review is only one of many different system development activities. The central question is:
to what degree should the activities in the formal development process be mirrored in the conventional one, and
vice versa? The answer depends on the exact purpose of the experiment. This purpose has to be clearly defined,
and both the formal and conventional developments have to be configured with respect to this purpose. If we are
only interested in the effects of formalization, it seems the experiments should be organized in such a way that the
formal and conventional developments differ only with respect to the formalization and the immediate effects of
the formalization.

4.2 Integration in the software process

To define an error is not as easy as one might think. Anyone with at least some experience from software engineer-
ing knows that both specification and programming involves a lot of experimentation based on trials and failures.
Clearly, we need a definition of error that does not force the systems engineers to report on the large number of
alterations resulting from this kind of activities --- activities that are desirable and play an important role in any
practical software development. The error definition of [8], from now on referred to as the definition of error, seems
well-suited in this respect. Since a change to a design decision made and corrected within the same development
stage does not count as an error, the creative experimentation mentioned above is not constrained.

The FCM development was based on a waterfall process. Initially, we intended to complete each stage before
the next was started up, since this was basically required by the definition of error. In the FCM development the
requirements stage was completed before any of the other stages were started up. However, for practical reasons,
the design and implementation stages overlapped in time. Does this mean that the definition of error has to be mod-
ified? We do not think so. In our opinion, the problem was not really the definition of error, but rather our very
strict implementation of the waterfall process. The overlap of the development stages occurred because the devel-
opment of clearly separated sub-components progressed at different speeds. In our next experimental system de-
velopment we will try to adapt our routines for the collection of errors to an iterative, component based
development process in the tradition of [14], [15].

4.3 Satisfaction

The dependency on the development process is, however, not the only problematic aspect in connection with error
reporting. In the following we think of the final implementation as just another specification written in a format
suitable for efficient mechanized execution. In that case, we may view the activities within one development cycle
as a sequence of steps from one specification to the next. In order to decide whether we have found an error or not,
we need to know what it means for a specification to satisfy a requirement, or design decision, imposed by a more
abstract specification. In other words, we need a clear understanding of the term “satisfy” --- or, more scientifically,
a well-defined notion of satisfaction.

The FCM development made it perfectly clear that in the context of MSC, OMT, SDL and UML there is no
generally accepted notion of satisfaction. In fact, we are not aware of any design methodology based on this kind
of FTs that defines the notion of satisfaction in a satisfactory manner.



In the context of step wise software development it is more common to talk about refinement instead of satis-
faction. A specification A can be refined into a specification B if the specification B satisfies A. Within the FDM
community there is a large literature on the formalization of different notions of refinement. Pioneering papers
were published already in the early 70ties [16], [17], [18]. These papers were only concerned with the development
of sequential non-interactive software. Recent proposals concerned with the formalization of refinement are direct-
ed towards more complex systems --- in particular, systems based on interaction and concurrency.

FDMs for interactive and concurrent systems like TLA [19] and Focus [20] distinguish between three notions
of refinement of increasing generality, namely property refinement, interface refinement and conditional refine-
ment. Property refinement allows a specification to be replaced by another specification that imposes additional
functional and non-functional properties. Property refinement supports step-wise requirements engineering and in-
cremental system development in the sense that new requirements and properties can be added to the specification
in the order they are captured and formalized. Property refinement can be used to reduce the number of behaviours
allowed by a specification. Property refinement does not allow behaviours to be added; nor does it allow modifi-
cations to the external interface of a specification. Hence, property refinement characterizes what it means to re-
duce under-specification.

If software developments were based on property refinement alone, the inability to change the external inter-
faces would basically enforce the same level of abstraction throughout the whole development. As a result, the de-
velopments would often be unnecessarily complex and inflexible. To avoid this, we may use the notion of interface
refinement.

Interface refinement is a generalization of property refinement that allows a specification to be replaced by one
that has a different syntactic interface under the condition that all the runs of the refined specification can be trans-
lated into runs of the original one. Interface refinement supports the replacement of abstract data types by more
implementation dependent ones, it allows the granularity of interaction to be modified and it supports changes to
the communication structure in the sense that, for example, one channel can be represented by several channels, or
vice versa. Interface refinement also captures what it means to adapt the interface of an already completed system
to allow reuse in another environment or software development.

In the final phases of a system development, many implementation dependent constraints and restrictions must
be considered. This may require the introduction of additional environment assumptions. Unfortunately, property
and interface refinement do not support this. Instead, we may use the notion of conditional refinement, which can
be understood as property or interface refinement with respect to additional conditions or assumptions about the
environment in which the specified component is supposed to run. Conditional refinement supports the transition
from system specifications based on unbounded resources (unbounded buffers, memories etc.) to system specifi-
cations based on bounded resources. It allows purely asynchronous communication to be replaced by hand-shake
or time-synchronous communication, and it supports the introduction of exception handling.

In TLA specifications are logical formulas written in linear time temporal logic. If A is the more abstract spec-
ification and B is the more concrete specification then the three notions of refinement described above are all cap-
tured by the following formula:

CAB=>A

Hence, in order to verify a step of refinement it is enough to show that the abstract specification A is a logical im-
plication of the logical conjunction of the concrete specification B and some additional formula C. In the case of
property refinement, C is logically equivalent to true and therefore not needed; in the case of interface refinement
C characterizes the relationship between the concrete and abstract interfaces; in the case of conditional refinement,
C also formalizes the additional environment assumptions. Hence, if we think of A as the abstract requirement
specification and B as the concrete implementation, then C describes their relationship and gives together with A
the required system documentation.

In Focus this notion of refinement can be described graphically as in Figure 1. The downwards mapping D
translates the abstract input to the concrete input; the upwards mapping U translates the concrete output to the ab-
stract output; the condition C imposes additional environment assumptions; the arrow from the output of A to C
indicates that the assumption about future inputs may depend on what A has produced as output so far.

The nice thing about this definition is that it can easily be translated into a SDL setting. Assume A and B are
SDL specifications, then B is a refinement of A if we can specify C, D and U in SDL such that for any abstract
input history generated by C, the abstract output history generated by the block consisting of the piped composition
of the SDL specifications D, B, U is a possible output history of A.

The interesting question at this point is of course: can we base our definition of error on this notion of refine-
ment? This is not quite clear. Firstly, this definition is certainly not sufficient on its own; the reason is that it con-



siders only the external black-box behaviour. Hence, glass-box requirements on how A is to be organized internally
are not captured.
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Figure 1: Graphical representation of refinement

Secondly, although we believe that this definition, with some minor generalizations, is well-suited to describe what
it means for an SDL specification to refine the black-box behaviour of another SDL specification, we are less con-
vinced that this definition captures the relationship between two MSC specifications, or between a MSC specifi-
cation and a SDL specification. The Focus definition works well for SDL because a SDL specification, as a
specification in TLA or Focus, describes the set of all allowed behaviours. Under the assumption that C, D and U
have been specified correctly, we are satisfied with the SDL specification B from a black-box point of view, if its
set of behaviours is a subset of the behaviours allowed by the SDL specification A with respect to C, D and U. The
SDL specification A may, however, allow additional behaviours. An MSC specification, on the other hand, de-
scribes a set of behaviours (example runs) the system is required to support --- at least this seems to be consistent
with how the MSC language is used, traditionally.

The problem areas identified above are important. They are of course not the only ones. For example, the issue
of defining and selecting the right metrics has not been mentioned. How to motivate the systems engineers to pro-
vide the required error reports etc. in a consistent manner, is another slightly different, but nevertheless very im-
portant, issue?

5. CONCLUSIONS

To set up experiments and collect experimental data is not difficult. To do this in a way such that interesting and
scientifically valid conclusions can be drawn is, however, in many contexts very challenging. This was highlighted
by the FCM development. The possibilities for mistakes and undesirable effects are many. For example, in the
FCM development we recorded, on the one hand, a very low number of design errors with respect to the external
black-box behaviour of the requirements specification. Hence, if we define a notion of satisfaction that considers
only the external black-box behaviour, this could be interpreted as experimental evidence for the claim that for-
malization reduces the number of design errors (there are of course a wide range of alternative explanations). On
the other hand, the organization and relationship of classes and objects in our design specification was not at all in
accordance with the requirements imposed by the class-diagrams of the requirements specification. Hence, if we
had used a notion of satisfaction requiring the glass-box constraints imposed by these class-diagrams to be mirrored
at the design level, we would have recorded a very high number of design errors, and our experiment could be in-
terpreted as experimental evidence for the invalidity of the claim that formalization reduces the number of design
errors (again there are of course alternative explanations). We just mention this to stress that this kind of experi-
ments must be carefully set up and monitored --- and moreover, one should not be too ambitious.



We found the proposals of [8], [9] both helpful and inspiring. Both papers present results from small scale ex-
periments and report on evidence in favour of increased formalization. However, as pointed out in [8]: “Conclu-
sions drawn from this experiment should be moderated by the small size of the development and the
correspondingly small number of faults detected. The development team was also small and staffed by self-selected
individuals who, being keen to make a success of the experiment, were perhaps better motivated than average. It
would not be wise to extrapolate these results to larger projects.”

As we see it, the task of our research activity can only be to come up with a strategy that allows at least some
aspects connected to the effects of formalization to be measured. Hence, what we expect to achieve are better tech-
niques and strategies for this kind of experiments.We will certainly test out these techniques and strategies in soft-
ware developments at the HRP. The empirical data collected from these HRP experiments will, however, hardly
be sufficient as experimental evidence for interesting claims. There are two main reasons for that. Firstly, as al-
ready mentioned: the HRP is a research project and not a software house. System developments at the HRP nor-
mally result in prototypes that are used for scientific purposes only. Our system developments are usually rather
small, there are not very many, and the resulting prototypes are not tested out and maintained in the same way as
the products of commercial tool vendors. Hence, the data collected from our experiments will not give a realistic
picture (except, of course, for HRP like research projects). Secondly, there should be a clear separation between
the scientists that set up and run the experiments, and the system engineers that carry out the developments. This
is not easily achievable at the HRP. This sums up what we expect to achieve.

What we hope to achieve is to provide significant experimental evidence with respect to the effects of formal-
ization, but this requires that we find commercial partners that are willing to try out our proposals and provide suf-
ficient amounts of experimental data.
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