Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions

Verifying Hypermedia Applications by Using a MDE Approach

Cristian Koliver - Federal University of Santa Catarina, Delcino Picinin Júnior - Federal Institute of Santa Catarina, Celso A. S. Santos - Federal University of Espirito Santo and Jean-Marie Farines - Federal University of Santa Catarina

BRASIL

Valencia, 29 september 2014

Introduction	The Proposed Design Method	Formal Verification	Toolchain	Conclusions
000000	000000	000000000	0000000	00000
Summary				

- 2 The Proposed Design Method
- **3** Formal Verification

4 Toolchain

5 Conclusions

Introduction ••••••	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions 00000
Summary				
• Des	uction permedia Document D sign Solutions in Challenges	esign		

- 2 The Proposed Design Method
 - Design Method
 - Transformation Step: from Designer Representation to Verification Representation
- 3 Formal Verification
 - Observers
 - Verification
 - Verification in Practice
- 4 Toolchain
 - Toolchain Associated to the Proposed Method
- 5 Conclusions
 - Performance Analyze
 - Conclusions

Introduction 00000	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions 00000
Hypermed	ia Document Desig	gn		

Some Issues:

- Hypermedia Document Requirement:
 - time constraints
 - spatial constraints
 - user interactions
- Live Design
- Designer, publicist and journalist: limited knowledge in computing

Drawback

 Undesirable behaviors introduced during the creation of document

Introduction	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions 00000
Summary	/			
1 Intro	1 Introduction			
• H	ypermedia Document D	esign		
• D	esign Solutions			
• N	lain Challenges			

- 2 The Proposed Design Method
 - Design Method
 - Transformation Step: from Designer Representation to Verification Representation
- 3 Formal Verification
 - Observers
 - Verification
 - Verification in Practice
- 4 Toolchain
 - Toolchain Associated to the Proposed Method
- 5 Conclusions
 - Performance Analyze
 - Conclusions

Introduction	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions
Design S	Solutions			
Usual	Solution			
• T	est of all possible behavi	ors		

- A lot of work, costly
 - Non-exhaustive
 - Inappropriate in live editions (due to the time required)

Proposed Solution: Three-step method based on verification

- Modeling/Edition:
 - Hypermedia languages (NCL and SMIL)
- 2 Transformation:
 - From Hypermedia Document language to Formal Verification Model
- Verification
 - Model-checking: checking properties which represent desired behaviors

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions
Summar	у			
1 Intr	oduction			
• -	lypermedia Document D	esign		
•	Design Solutions			
• 1	/lain Challenges			
2 The	e Proposed Design Metho	od		
• [Design Method			

- Transformation Step: from Designer Representation to Verification Representation
- 3 Formal Verification
 - Observers
 - Verification
 - Verification in Practice
- 4 Toolchain
 - Toolchain Associated to the Proposed Method
- 5 Conclusions
 - Performance Analyze
 - Conclusions

Introduction	The Proposed Design Method	Formal Verification	Toolchain	Conclusions
○○○○○●	000000	000000000	0000000	00000
Main Challenges				

1- Time Relationships Verification

Detection of undesirable behaviors originated from temporal relationships, and also remote control actions.

2- Spatial Relationships Verification

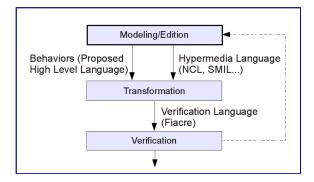
Guarantee of media display on the appropriate presentation region.

3- Live Editing

Verification on-the-fly with admissible response time.

4- Application Design Facilities

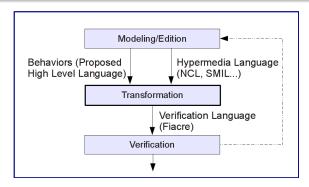
Friendly environment for designers without expertise on formal models.


Introduction 000000	The Proposed Design Method ●00000	Formal Verification	Toolchain 0000000	Conclusions 00000
Summ	ary			
	ntroduction Hypermedia Document Des Design Solutions Main Challenges	ign		
	 The Proposed Design Method Design Method Transformation Step: from Verification Representation 		itation to	
	Formal Verification Observers Verification Verification in Practice 			

- 4 Toolchain
 - Toolchain Associated to the Proposed Method
- **5** Conclusions
 - Performance Analyze
 - Conclusions

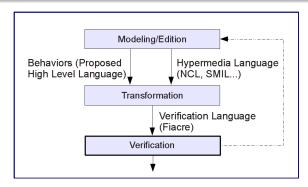
Introduction	The Proposed Design Method	Formal Verification	Toolchain	Conclusions
000000	0●0000		0000000	00000
Design N	lethod			

1- Modeling Step


- Application written in hypermedia languages (NCL or SMIL).
- Desired Behaviors written in High Level Property Language.

Introduction	The Proposed Design Method	Formal Verification	Toolchain	Conclusions
000000	00●000		0000000	00000
Design M	lethod			

2- Automatic Transformation Step Using a MDE Approach


- From Hypermedia Application to Formal Verification Language (FIACRE).
- From High Level Property Language to LTL formula and FIACRE Observers.

Introduction	The Proposed Design Method	Formal Verification	Toolchain	Conclusions
000000	000●00		0000000	00000
Design Method				

3- Verification Step (Model-checking Principles)

- Unsatisfied property → counterexample (sequence of actions corresponding to the non-satisfaction of the property).
- Counterexample helps the designer to fix the application errors.

The Proposed Design Method ○○○○●○	Formal Verification	Toolchain 0000000	Conclusions 00000
uction			
ermedia Document D	esign		
ign Solutions			
n Challenges			
roposed Design Metho	bo		
ign Method			
	uction ermedia Document D ign Solutions n Challenges roposed Design Metho	uction ermedia Document Design ign Solutions n Challenges roposed Design Method	uction ermedia Document Design ign Solutions n Challenges roposed Design Method

- Transformation Step: from Designer Representation to Verification Representation
- 3 Formal Verification
 - Observers
 - Verification
 - Verification in Practice
- 4 Toolchain
 - Toolchain Associated to the Proposed Method
- 5 Conclusions
 - Performance Analyze
 - Conclusions

Introduction	The Proposed Design Method	Formal Verification	Toolchain	Conclusions
000000	○○○○○●		0000000	00000
Transforr	mation Step			

Transformation Rules: **From** Designer Representation **to** Verification Representation

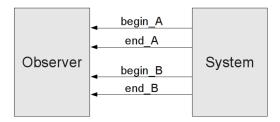
From Hypermedia Language

- Media (dynamics of the media)
- 2 Link between Medias
- Ossible User Interactions
- High Level Property
- I High Level Property

To FIACRE Language

- Fiacre Process
- Isiacre Glue Process
- Fiacre Remote Control Process
- Fiacre Observer with time + LTL formula
- ITL formula

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions
Summa	ary			
	troduction Hypermedia Document E Design Solutions Main Challenges he Proposed Design Meth Design Method Transformation Step: fro Verification Representatio	nod m Designer Repres	sentation to	
•	ormal Verification Observers Verification Verification in Practice			


- 4 Toolchain
 - Toolchain Associated to the Proposed Method
- 5 Conclusions
 - Performance Analyze
 - Conclusions

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions 00000
Verificatio	n			

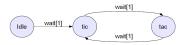
Behaviors can be checked in two ways:

- LTL formulas
 - when they consider only occurrence of events
- Observers and LTL formulas
 - when they measure the elapsed time between events
 - when they consider the cause of an event


Observers capture events occurring in the Hypermedia System

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions 00000
Observers				

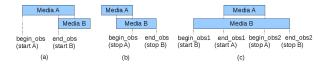
Temporal Observer:


- The figure shows the basic observer which identifies the elapsed time between the arrival of the *begin_obs* and *end_obs* messages:
 - **(**) end1: *elapsed time* $< t_{min}$
 - 2 end2: $t_{min} \leq elapsed$ time

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions 00000
Observers				

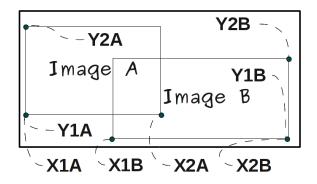
Global Time Observer- identifies a precise time when something occur.

- Aiming discretize the passage of time, the observer changes its state every second.
- Adopted in the analysis of counterexamples.


Introduction 000000	The Proposed Design Method	Formal Verification ○○○○●○○○○○	Toolchain 0000000	Conclusions 00000
Summar	ТУ —			
• F • [• N • N • [•]	roduction Hypermedia Document D Design Solutions Main Challenges e Proposed Design Metho Design Method Transformation Step: fror Verification Representatio	od m Designer Repres	sentation to	
• (• \ • \	rmal Verification Observers Verification Verification in Practice			

- Toolchain Associated to the Proposed Method
- 5 Conclusions
 - Performance Analyze
 - Conclusions

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions 00000
Time Ver	ification			


Only LTL formulas/Observers and LTL formulas

- Intramedia relationships- checks exhibition and time limits
- Intermedia relationships- checks all Allen's relationships, as:
 - (a) B-start after A-start
 - (b) *B*-stop after *A*-stop
 - (c) A overlapping B

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions 00000
Spatial V	erification			

• **Spatial** - checks full or partial spatial overlap of object or screen regions

Introduction 000000	The Proposed Design Method	Formal Verification ○○○○○○●○○	Toolchain 0000000	Conclusions 00000
Summary	y			
• H • D • N 2 The • D • T	oduction lypermedia Document De Design Solutions Main Challenges e Proposed Design Metho Design Method Transformation Step: from Yerification Representation	od n Designer Repres	sentation to	
• 0 • V • V	mal Verification Observers Verification Verification in Practice			

- Toolchain Associated to the Proposed Method
- **5** Conclusions
 - Performance Analyze
 - Conclusions

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions 00000
Verificatio	on in Practice			

Application "Live Longer"

- Erroneous behavior- menu displayed out of human visual perception
- Intramedia Property- when presented, media *menu_Dish1* always remains visible for a minimum time observable by perceptible human vision
 - The property to check the vision time, is represented by *ob_menu_Dish*1 observer

- the observer's behavior is verified by LTL formula:
- $\Box(ob_menu_dish1_running \Longrightarrow (\neg(\Diamond(ob_menu_dish1_end1))))$
- The result is "False"

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions 00000
Counterex	ample			

Counterexample media *menu_dish*1

- The time between **running** and **stopped** states is less than the minimum required.
- Erroneous behavior- *menu_dish*1 displayed out of human visual sense

Line	Time	Media	States
1	74	menu_Dish1	Stopped
2	74	menu_Dish1	Running
3	75	menu_Dish1	Stopped

- This table is part of a graphical interface, generated after the verification process.
- The Time column is generated from the Global Time Observer.

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain ●000000	Conclusions
Summar	У			
• H • D • M • M • D • D • T • T	roduction Hypermedia Document D Design Solutions Main Challenges & Proposed Design Meth Design Method Fransformation Step: from Verification Representation	od m Designer Repres	sentation to	
	mal Verification Observers /erification /erification in Practice olchain			

• Toolchain Associated to the Proposed Method

- 5 Conclusions
 - Performance Analyze
 - Conclusions

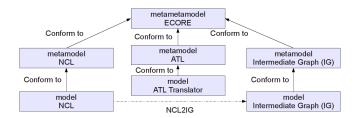
Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain ○●○○○○○	Conclusions 00000
The Pro	posed Toolchain			
Toolch	nain			
 M 	lodeling/Edition			
	• Authoring Tool and P	roperty Editor		
2 T	ransformation			
	• From Hypermedia La	nguage to Interm	ediary Graph	(IG)
	 Reduction IG Graph From IG Graph to Fo 	rmal Representati	ons	
0 V	erification		0115	
U V	erification			
	Authoring Tool NCL	Property Ed (Behaviors to be of ransformation		
		uction Graph (IG)		

♥ Transformation Graph (IG) to Formal Representation

Verification

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 00●0000	Conclusions 00000
1- Proper	ty Editor			

- *Graphical User Interface* (GUI) assist the designer specification of types of behaviors:
 - Intra-media
 - Inter-media
 - Causal
 - Spatial

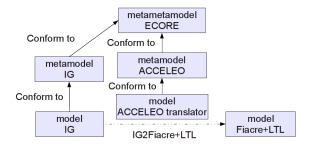

Intra-media Inter	-media (General) 👔 Inter-media (Causal) 🍸 Spatial 📄			
Medias	Behaviors List	Selected Bel	naviors, Med	dias and Times
video	[1] The media will always be presented	Behaviors	Medias	Times
dish2	[2] The media will never be presented	1	icon	-
dish1result	[3] The media will always finish its exhibition	1	dish2	
dish2result	[4] When presented the media never reach a minimum time	2	dish2	•
dish3result	[5] When presented the media always reach a minimum time	4	icon	1
dish4result		4	icon	11
backdish		4	icon	12
dish1		4	dish2	1
icon		5	dish2	2
Minimum Time: 2	Create	Delete		

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 000€000	Conclusions
2- Trans	formation Hyperme	dia to IG Grau	ch	

IG Graph:

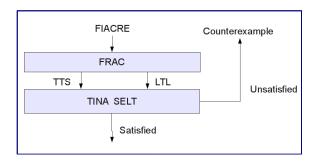
- Allows use of graph theory in the reduction process
- Add new Hypermedia language to the verification chain
- MDE Transformation model-to-model (M2M): transforms from NCL application to Intermediary Graph (IG)
- Transformation rules coded in ATL language

J |



Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 0000●00	Conclusions 00000
3- Reduci	ng IG Graph			

- Goal: reduce the computational cost of the verification process during the **live design**.
- Receives as inputs IG and a set of properties
 - performs reduction for each media and property associated
 - preserves the relevant parts of this graph for checking the desired properties
- Developed in Java



- MDE Transformation model-to-text (M2T): transforms from IG Graph to FIACRE Model
- MDE Transformation model-to-text (M2T): transforms from High Level Properties to FIACRE Properties (LTL)
- Transformation rules coded in ACCELEO language

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 000000●	Conclusions 00000
5- Verifica	ation			

- The code in Fiacre is compiled by the FRAC tool generating an equivalent code in TTS and LTL
- SELT, the model checker tool of the TINA toolbox
- SELT allows to verify formulas written in LTL
 - When the formula is unsatisfied, a counterexample is generated to help the designer

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions ●0000
Summa	iry			
2 T 3 Fo	troduction Hypermedia Document D Design Solutions Main Challenges he Proposed Design Meth Design Method Transformation Step: fro Verification Representation	od m Designer Repres	sentation to	
•	Observers Verification Verification in Practice			
4 Te	oolchain			

- Toolchain Associated to the Proposed Method
- **5** Conclusions
 - Performance Analyze
 - Conclusions

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions ○●○○○
Performa	nce Analyze			

Verification of previous application "Live Longer". In all cases, the reduction resulted in a decrease in the size of the model, as well as lower response time

Description	States	Transitions	Time
Complete Model	26448	94454	18 seconds
Reduced Model	18576	66198	3 seconds
Complete Model (1 Observer)	33678	120688	29 seconds
Reduced Model (1 Observer)	22830	79928	4 seconds
Complete Model (2 Observers)	44105	161067	37 seconds
Reduced Model (2 Observers)	29017	101235	5 seconds

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions
Summ	nary			
2	 Introduction Hypermedia Document D Design Solutions Main Challenges The Proposed Design Method Design Method Transformation Step: fror Verification Representatio 	od n Designer Repres	sentation to	
	 Formal Verification Observers Verification Verification in Practice Toolchain 			
	• Toolchain Associated to t	he Proposed Met	hod	

- **5** Conclusions
 - Performance Analyze
 - Conclusions

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions
Conclusi	ons			

- Proposal and validation of a Design Method
- Development and test of toolchain supporting this Design Method based on MDE
 - Guarantee of coherence between hypermedia model and formal model **MDE**
 - Issues for Hypermedia Document
 - requirement to verify (temporal, causal and spatial)
 - live design (by reduction, decreasing the computational cost)
 - facilities for designer without expertise in verification

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions ○○○○●
Questions	and Contacts			

- Cristian Koliver
 - ckoliver@gmail.com
- Delcino Picinin Júnior
 - picinin@gmail.com
- Jean-Marie Farines
 - j.m.farines@ufsc.br
- Celso Alberto Saibel Santos
 - celsoalbertosaibelsantos@gmail.com

Introduction 000000	The Proposed Design Method	Formal Verification	Toolchain 0000000	Conclusions ○○○○●	
	Verifying Hypermedia Applications by Using a				

MDE Approach

Cristian Koliver - Federal University of Santa Catarina, Delcino Picinin Júnior - Federal Institute of Santa Catarina, Celso A. S. Santos - Federal University of Espirito Santo and Jean-Marie Farines - Federal University of Santa Catarina

BRASIL

Valencia, 29 september 2014