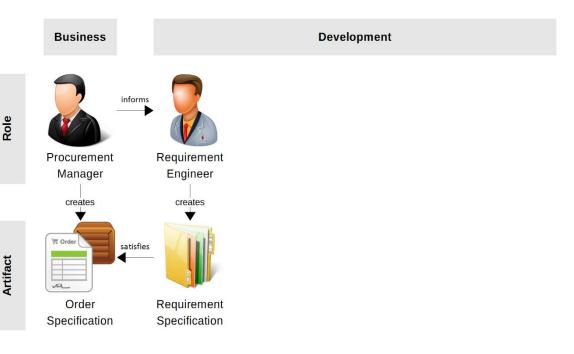
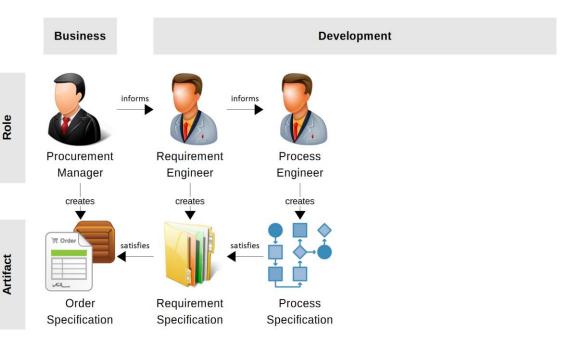
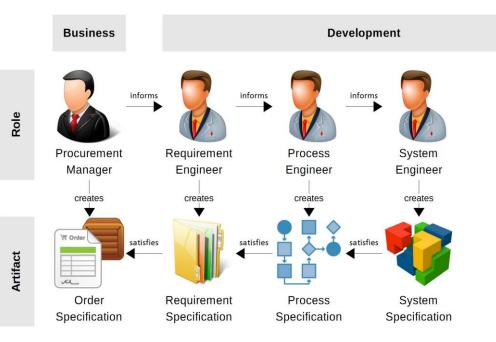
Formal Technical Process Specification and Verification for Automated Production Systems

> <u>Georg Hackenberg</u>, Alarico Campetelli, Christoph Legat, Jakob Mund, Sabine Teufl and Birgit Vogel-Heuser

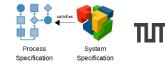
ЪΠ


Motivation » Automated Production Systems (Google)









Process Specification Techniques

- Business Process Model & Notation
- Formalized Process Description

But what we found missing is ...

a general integrated approach to process specification and design / run time verification.

Formal Verification Techniques

- Design time
 - E.g. Simulink Design Verifier
 - Temporal logics / patterns
 - Life sequence charts
 - UML communication diagrams

— Run time

- Run time verification / monitoring
- Temporal logics

Specification Technique

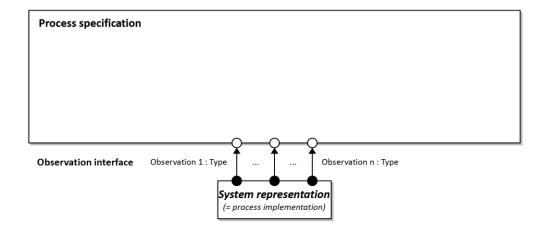
- Abstract syntax
- Graphical notation

Rigorous Formalization

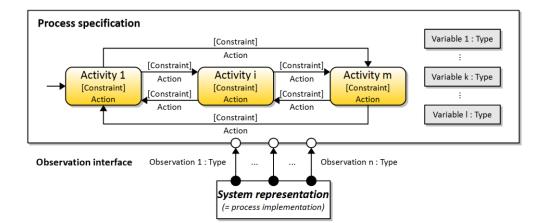
- Precise semantics
- Machine computable

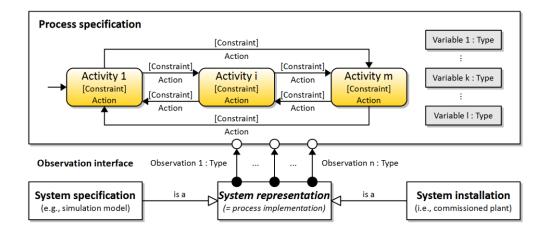
Verification Technique

- Design time
- Run time

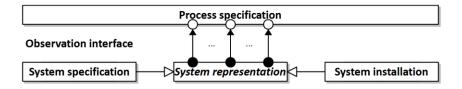

- 1. Contribution
- 2. Evaluation
- 3. Conclusion

8	



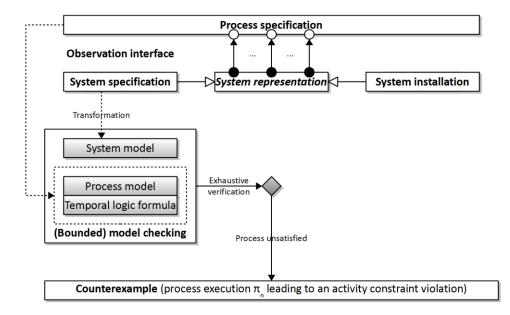


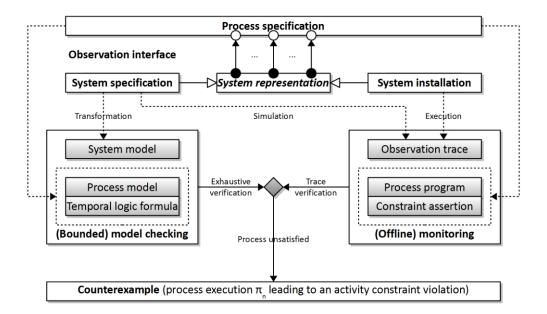
Definition 4 (Process satisfaction). Given some process specification $P = (A, M, N, O, V, T, a', v', f_1, f_2, g_1, g_2)$, an observation trace $\tau_n = (\omega_k)_{k=0}^n$ and the respective process execution $\pi_n = (\alpha_k, \omega_k, \phi_k, \beta_k)_{k=0}^n$:

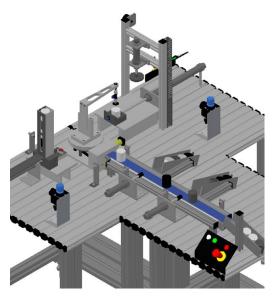

 $\tau_n \text{ satisfies } P \Leftrightarrow \forall k \in D : \beta_k = true$

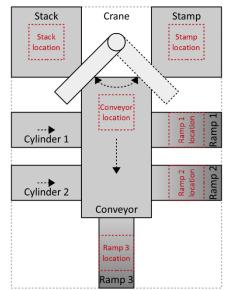
with $n \in \mathbb{N} \cup \{\infty\}$ defining the sequence length and D representing the finite or infinite set of sequence indices:

$$(n = \infty \Leftrightarrow D = \mathbb{N}) \land (n \neq \infty D = \{k \in \mathbb{N} : k \le n\})$$



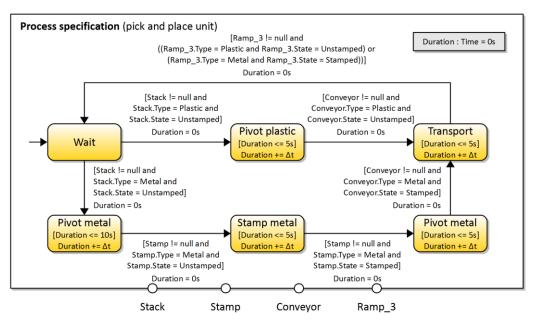


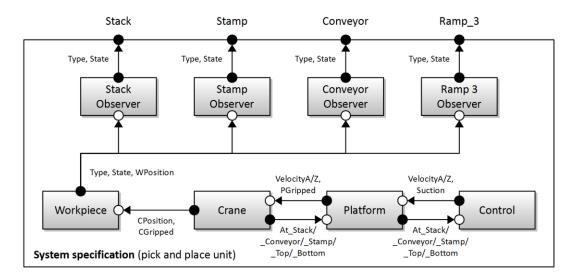

- 1. Contribution
- 2. Evaluation
- 3. Conclusion



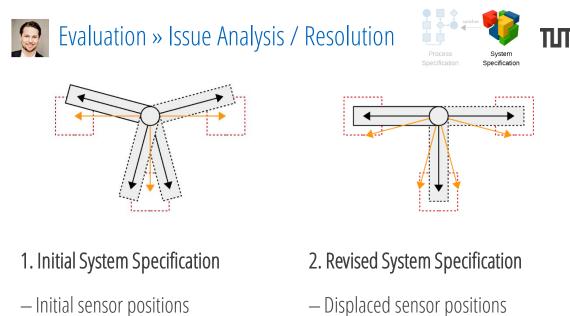
Process System Specification Specification

Geometric Setup


Plant Layout



Evaluation » Satisfaction Verification



Specification

Specification

em

	St	ep	1	2	 30	31	 102	103
	Morkniego	WPosition	{A: 0, Z: 0}	{A: 0, Z: 0}	 {A: 65, Z: 1}	{A: 70, Z: 1}	 {A: 210, Z: 0}	{A: 210, Z: 0}
model	Workpiece				 		 	
ощ		CPosition	{A: 0, Z: 0}	{A: 0, Z: 0}	 {A: 65, Z: 1}	{A: 70, Z: 1}	 {A: 210, Z: 0}	{A: 210, Z: 0}
System	Crane	OSuction	false	false	 true	true	 false	false
Sys	Sys				 		 	
	Acti	vity	Wait	Pivot metal	 Pivot metal	Pivot metal	 Pivot metal	Pivot metal
model		Stack	{Type: Metal}	null	 null	null	 null	null
	Observations				 		 	
Process	Variables	Duration	0.0s	0.1s	 3.0s	3.1s	 10.0s	10.1s
Ā	Activity C	onstraint	true	true	 true	true	 true	false

– Incorrect crane angles

- <u>Correct</u> crane angles

- 1. Contribution
- 2. Evaluation
- 3. Conclusion

8	

Benefits

☑ Obervation interface allows to...

- Decouple and integrate process and system specification
- Model process specification over abstract observation streams
- Model system specification using observer components
- ☑ Verification technique allows to...
 - Prove process satisfaction both at design and at run time

Future Work

- □ Improve graphical notation of the process specification
 - Reduce modeling effort through inclusion of specification patterns
- □ Analyze and improve scalability of the presented approach
 - Prove process satisfaction for the entire pick and place unit
 - Prove process satisfaction step-wise from activity to activity?

Formal Technical Process Specification and Verification for Automated Production Systems

> <u>Georg Hackenberg</u>, Alarico Campetelli, Christoph Legat, Jakob Mund, Sabine Teufl and Birgit Vogel-Heuser

ЪΠ