- 25 -

TD 2116 Rev.1

	INTERNATIONAL TELECOMMUNICATION UNION
	STUDY GROUP 17

	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2009-2012
	TD 2116 Rev.1

	
	English only

Original: English

	Question(s):
	13/17
	Geneva, 24 August – 2 September 2011

	TEMPORARY DOCUMENT

	Source:
	Q13/17 Rapporteur

	Title:
	SDL‑2010 Route Map (TAL08)

TAL08r09. This updates and 'completes' TAL08r08. See below.

This document is the current plan for SDL‑2010 based on TD1622 of Apr 2011. The previous versions are TD1199 of Dec 2010, TD0886 of April 2010, TD0469 of April 2009, TD0078 of February 2009, TD3498 of April 2008, and TD 3424 Sep 2007 (Z.100 Route Map) that in turn was based on earlier versions. ANNEX 1 (Z.100 Changes to support Z.109) was updated for February 2009 and ANNEX 2 (Z.100 Action items) in April 2010.

This document is the route map for the development of a revised version of the ITU‑T Specification and Description Language standard in the third quarter of 2011, at which point it is currently proposed to forward initial versions of Z.100 to Z.104 for SDL‑2010 for consent. At the time of writing the current standardized (or in ITU‑T terminology Recommended) version is called SDL‑2000. In this document and ongoing work the revised version is called SDL‑2010.

The status of TAL08r8 was that the main text had been updated to reflect Z.100 to Z.105 for consent, except the tables in Annex 2. In TAL08r9 these tables have been updated and it was possible to remove many of the items in TAL08r8 that had ether been suggested for removal in April 2010 or can be removed because the issue does not apply for SDL‑2010 text for the reason explained in each case. Some of the remaining items in the tables need to be checked against the final SDL‑2010 text, but it is expected these can also be removed are no longer applicable. That will leave a few remaining items to carry forward for ongoing language maintenance.

1. Background, history and status of SDL‑2000

SDL‑2000 was completed in 1999 with revised versions of the ITU‑T Recommendations Z.100, Z.105, Z.107 and Z.109. The main document was Z.100 with Z.105 and Z.107 covering use of ASN.1 with the SDL‑2000, and Z.109 covering use with the Unified Modelling Language. A revised the Common Interchange Format for SDL‑2000 in ITU‑T Recommendation Z.106 supplemented these in the year 2000. Since then there have been some minor updates to these Recommendations. The text was re-organised in 2002 so that Z.100 describes the graphical language and the parts of the textual (SDL/PR – phase representation) that are alternatives to graphical presentation were moved to the interchange format in Z.106. At the same time a number of corrections and a few minor changes were made. In 2003 a Corrigendum was issued to incorporate to new Annexes B and C that concern backwards compatibility and conformance to the standard. But these changes have been minor or re-organization only or to correct flaws in the 1999 version, so that essentially SDL‑2000 has not changed and has remained stable.

When SDL‑2000 was being developed, right up until the ITU‑T meeting at which it was approved there were two sizeable software organizations that were promising to produce tools to support SDL‑2000 in 2000 or 2001: Telelogic and Verilog. A merger of these two organizations in Telelogic had been announced before the end of 1999, so that some competition was removed in the tool market. Although these commercial tools already supported some of the features of SDL‑2000 by 2000, it is now unlikely that there will ever be a tool that approaches full support of SDL‑2000 in its final form of Z.100 (11/2007). Even the tool that best supported SDL-92, Cinderella, reached a position by 2007 when it would probably never offer full SDL‑2000 support, because it has a smaller (at least in value terms) share of the ITU Specification and Description Language tool market and had to offer compatibility with Telelogic as the market leader at that time. Cinderella collaborated with Humboldt Unviversity that previously had not entered into the commercial tool market. The Humboldt SDL tool implemented many of the features of SDL‑2000 on a trial basis to test the feasibility of various ideas - indeed some features such as nested packages were implemented specifically to support feature requests promoted by Humboldt for OMG related work. In 2003 SOLINET announced the SAFIRE tool set, claiming that it is based on Z.100. In late 2004 PragmaDev, which previously supported a dialect called SDL-RT announced support also of Z.100. All four organisations (Cinderella, PragmaDev, SOLINET/SAFIRE, Telelogic) had commercial tools available in May 2006, though SOLINET/SAFIRE had ceased to be involved in ITU or SDL Forum activities and the future of the language. By November 2008 all Telelogic products and services had become part of the IBM Rational Software portfolio, and the main tool vendors were IBM, PragmaDev and Cinderella (probably in order of market share at that time). At the time of writing all three of these vendors are still offer Specification and Description Language tools.

Since 1999 the general market perception has developed. In 1999, part of the rationale for developing Z.109 as a UML profile for the ITU Specification and Description Language was because UML was perceived as a major competitor to the ITU language. Within the telecommunications industry some organisations were divided internally between those that favoured the ITU Specification and Description Language and fans of UML. A decade later the perspective is quite different, because the issue is not seen as whether to use UML or SDL‑2000 (and other ITU languages), but how to use these together. In retrospect it would be easy to say this was always the way it was seen - but to be truthful this was not the case especially in 1997 and 1998 when SDL‑2000 was being formulated. However, it is now clear that the state machine specification part of UML 2.1.2 is not really a complete language in itself, because of the semantic and syntactic variations that are allowed, and that to make its use practical an (implicit or explicit) profile for UML has to be used. The revised Z.109 profile of 2007 is geared to the needs of the telecommunications industry by mapping UML 2.1.2 onto the more precise (and therefore more practical) Z.100 semantics and (where UML 2.1.2 gives notation options or no specific notation or no notation) binding to the Z.100 syntax.

It is not by accident that the situation has been reached today where UML and ITU System Design Languages are seen as complementary rather than competing. Between 1999 and 2004 there was a significant involvement of ITU System Design Language experts in the ongoing development of UML, in particular for UML2.0. The ITU languages have the good features of being well-defined and having action semantics that ensure specific behaviours. UML is good at object modelling and has proven to be a success at providing a framework for using different languages together - a feature that the ITU languages (for historical reasons) lack. Rather than defining new precise action languages for UML, or adding a framework scheme and object modelling to the ITU System Design Languages, the sensible way forward from a telecommunications system engineering point of view is to combine these features of both approaches.

It was therefore not a surprise to see the industry use tools that combine UML with the SDL‑2000 semantic engine. This was the perspective of several major telecommunications manufacturers, and therefore the general direction of industry.

However, the situation with SDL‑2000 after nearly a decade is unsatisfactory for all parties. Despite the 1996‑1999 intention to ensure the language standard and tool support should be closely aligned (of course, ideally the same), this was not reality in 2006 through to the start of 2009. The language available to users is effectively SDL-92 with the 1996 addendum plus some of the features of SDL‑2000 (depending on which tool is used) and often using legacy syntax for data. It was to ensure users are still able to produce SDL models that are valid according to the standard that Annex B was added to Z.100 for SDL‑2000, which allows the legacy syntax supported by tools.

Not only was SDL‑2000 not fully supported, but also as UML and other languages such as the ITU‑T User Requirements Language, become more commonly used there have been changing expectations of the facilities offered by the Specification and Description Language. Some, such as UML-like syntax, do not seem to be required. Others, such as time-supervised states, that are not included in SDL‑2000 seem to be desirable.

2. The data issue

A data model that provides data with both sets of values (as in ASN.1) and operations is essential for any language that is to provide executable models or implementations. SDL‑2000 made a major change to the way that data was defined: the algebraic axiom approach was removed from the user language and leaving just a constructive data approach (as in most programming languages). At the same time object data types were added. Leaving aside whether reference (object) data is actually needed and the "modernized" syntax, it was reconsidered if SDL‑2000 data is the best approach for SDL‑2010.

An SDL‑2000 user is faced with the option of using either ASN.1 or SDL to define data types. If ASN.1 is used SDL‑2000 provides a built-in set of operators. Similarly the built-in SDL‑2000 data types provide a set of defined operators. The only real advantage of the SDL‑2000 value data types over ASN.1 is an arguably nicer syntax. The language could be made simpler by removing the SDL‑2000 data types, but this would not be acceptable for legacy reasons and Z.109 (06/07) essentially incorporates the SDL‑2000 data types.

Tools that produce target code for SDL‑2000 are usually proprietary products of larger companies. Commercial tools usually implement ASN.1
 and SDL‑2000 data in one of two ways: providing translation to another programming language (usually C or C++), or producing code for a virtual machine and providing an emulator for that machine (written in some other language like Java or C). The advantage of either of these approaches is that they are target machine independent. However, there remains the issue of interfacing code from SDL‑2000 with other code, especially device and message handlers and possibly the RTOS.

An alternative is to open up the language to external data types. In fact this was envisaged in SDL‑92, with the external data syntax, but (as seen from the MSC and UML experience) it is difficult to define a language that can use the declarations and expression syntax in a plug-compatible way. Moreover, Z.121 now provides an MSC to SDL‑2000 data binding. Also from the user viewpoint the meaning of an expression in SDL‑2000 would depend on the actual data language used, which may not be clear from context. As with MSC, there are requirements on any data language used, so that data is compatible with essential features such as timers. Despite these issues, from a user point of view using a data expression notation from another language can be a practical approach (as evidence see SDL-RT). The plan therefore for SDL‑2010 is to first ensure SDL‑2000 data is supported, and then define a way of providing a binding to other language syntaxes such as Java, C (or C++) or the data language of SDL-RT.

3. Diagram structure

It has been agreed for some time that although the Specification and Description Language has both a graphical (SDL/GR) and textual (SDL/PR) presentation form coupled by a common abstract grammar, the primary presentation form is graphical, and the textual form is used mainly as an interchange format. Specifications in the language therefore usually consist of a number of diagrams. While in SDL‑2000 it is permitted to draw diagrams for inner components nested inside the diagrams for the enclosing component, in practice this is not done for two reasons: in general the resulting diagram would be too large, and full tool support is not provided. Even though some tools support the printing of such physically nested diagrams to some extent, diagrams are usually generated separately, and for any reasonable size system nested diagrams become too extensive to handle, read or comprehend. Instead inner diagrams are referenced from enclosing diagrams, so that each diagram is of a reasonable size and this is the form supported by tools.

On the other hand, the semantics of the language is defined in terms of a single hierarchical model in the abstract syntax, in which the referenced diagram replaces each reference (after eliminating any duplicates). In SDL‑2000 the change from references to the hierarchy this is done by transformations to a nested concrete syntax (not supported by tools) and then this concrete syntax is mapped to the abstract syntax. In SDL‑2010 the change from references to the hierarchy is done when by mapping referenced diagrams directly to the abstract grammar. In the concrete syntax the nested graphical form (which is not generally tool supported for diagrams in any case) is no longer part of the language. This is a worthwhile simplification. To some extent, moving SDL/PR to Z.106 in 2002 enabled this change.

4. Shorthand transformation models

Since SDL‑88 and in SDL‑92 and SDL‑2000, transformation models have been used to define a number of language features, where a given concrete syntax is transformed into another concrete syntax. These features are often called "shorthand" productions. While these features are often so useful and practical that they are essential, they are not essential in a theoretical sense as the transformed concrete syntax can (usually) be used instead of the shorthand version. In fact the Abstract Syntax and language Semantics are (or at least should be) defined only for concrete syntax that cannot be transformed. It is this canonical syntax that is mapped to Abstract Syntax. The Semantics and (as far as possible) constraints are expressed in terms of the Abstract Syntax.
An objective in SDL‑2010 is to keep the core of the language as small as possible (and therefore easier to understand), and as far as possible separate the description of the transformation models from the core parts of the language. This is reflected in a reorganization of the SDL‑2010 standard compared with SDL‑2000 (see below).

5. Features without formal semantics

Some features (such as comments, paging, create lines, multiple type references) do not add to the semantics of an application model, but are provided to allow annotation to be presented for the benefit of engineers. While these features should be checked for consistency, tools otherwise ignore them. In SDL‑2010 these features are separated from the extended finite state machine parts of the language.

In particular, the Association feature was added in SDL‑2000, to allow UML-like associations to be shown between types (or "classes" in UML terminology). This had no semantic meaning in SDL‑2000, and is arguably now better covered by using UML tools and applying the UML profile in Z.109.

6. Feature deletion, retention and extension for SDL‑2010

As for previous versions (SDL-88, SDL-92) the language definition has had several years of stability, and it was appropriate to consider what change should be made for the new version. This version was initially scheduled for consent in 2008 in line with the end of the ITU study period 2005-2008 (and hence initially named SDL‑2008). This was not achieved, but it was decided at the September 2009 ITU‑T meeting to change the name to SDL‑2010, the expected year for consent. As before, one objective is to simplify the language and to have a clearly defined basic SDL: the SDL Task Force (a small consortium outside ITU‑T) was ostensibly set up with this objective, but it seems that this organisation had (October 2005) effectively ceased to exist, and the target of this group was not an SDL‑2000 subset. In addition extension proposals for the language have come from many sources such as the SDL-RT, the SDL Task Force, and industry users. There are ideas considered previously but not incorporated into SDL‑2000 and a few ideas to support UML profiling not in SDL‑2000. There are some changes in SDL‑2000 compared to the previous version that have not been widely implemented such as object data, the UML class symbol for types and UML‑like associations. Some features, such as exception handing have been implemented in just one tool.

Ideally there should have been a critical look at features to be deleted to assess if the potential benefit is worth the complication of having the feature in the language, and if it is likely to be widely implemented and usefully deployed if it is retained. In this case, to justify its existence a feature has to be useful for a reasonable body telecommunications system engineering applications, either for modelling or programming: being theoretically interesting or elegant is not sufficient reason for retention or addition of a feature. Although for feature deletion in the 1996-2000 period, two steps were adopted (first – open discussion on candidate features for deletion; second – a list widely circulation for agreement), for SDL‑2010 it was proposed the same process need not be applied, because SDL‑2000 is a richer language than SDL‑92 and there is no point in retaining features that have not been widely supported or used. On the other hand, features that are widely used should not be deleted, even if a better alternative exists or is proposed, because it has been found this kind of change leads to significant legacy problems. A more pragmatic approach has been being taken: some features are being deleted and some potentially useful ones (based on the participating expert contributions tempered by user and tool vendor feedback) are being added. The agreement step is also less necessary, because way Recommendations are approved at ITU‑T has changed since 1999, so that significant comments can now be made and handled in a more open way during the approval stage.

An important criterion for feature retention or addition is compatibility with UML. There are two reasons for this: UML is a coherent framework for binding ITU‑T languages together so SDL‑2010 needs to be consistent with the UML model, and provide the needed precise action semantics to UML. The creation of a UML profile for the telecommunications action language (in Z.109 (06/07) for SDL‑2000) was obviously a key determinant for this compatibility, and generated a few necessary or highly desirable changes to Z.100.

The current draft of SDL‑2010 has been prepared on the assumption that exception handling
 is deleted (while keeping the timers on remote procedures), object data is deleted (or at least simplified), and esoteric features (such as name class) are removed. In addition the Association feature and the use of UML class symbols for types are removed. Features added are in Annex 1.
7. Re-organisation of the documents for the language standard

SDL‑2010 is re-organised so that core features are defined within the Z.101 part of the language definition, with the remaining (retained) more complex language features described in subsequent parts (Z.102, Z.103, Z.104, Z.105 and Z106). In the new organisation Z.100 is re-utilized to provide an overview of the set of Recommendations.

Anyone who has been tracking SDL for a number of years will be aware that this structure for the language definition is not new: the 1988 version of SDL defined "Basic SDL" and then a number of additional features that extended "Basic SDL". This structure does not invalidate tools and applications that use the "full" language, while providing an identifiable subset. Initially for a revision of SDL‑2000 there was interest and support for identifying a subset of SDL. Some of the proposed benefits of having a clearly defined subset were:

-
It makes it easier to teach and learn the basics of SDL;

-
It makes it easier to produce and maintain tools that can handle such a subset;

-
If all tools that claim to support SDL have to support this subset, it gives a level a guaranteed portability.

-
Such a subset would characterise essential "SDLness".

Getting agreement on what should and should not be in such a subset is not an easy task. There will be many different opinions backed up by different experiences and value judgements. Work already existed such as studies at ETSI, which could lead a consensus result, so it was argued the potential benefits (some of which are outlined above) would justify the effort. Eventually it was agreed there were insufficient participants really interested in formally defining a subset, so that explicit defining such a subset was not a specific objective SDL‑2010.

The objective of the reorganisation has been separation of concerns.

The essential behaviour of a system defined using SDL‑2010 depends on the extended finite state machine model of Rec. Z.101 (coupled with the behaviour of expressions of Rec. Z.104). The other Recommendations Z.102, Z.103, Z.104, Z.105 and Z.106 provide language features that (respectively): make the language more comprehensive, make the language easier and more practical to use, provide the full data model and action language, enable ASN.1 to be used, and define the interchange format.

7.1 Basic SDL‑2010 - Z.101

Recommendation Z.101 contains the part of the Specification and Description Language Recommendations for SDL‑2010, that covers core features such as agent (block, process) type diagrams containing agent instance structures with channels, diagrams for extended finite state machines and the associated semantics for these basic features. This includes state types with contained states, because in SDL‑2010 every agent state machine is defined as an instance of such a state type.

7.2 Comprehensive SDL‑2010 - Z.102

Recommendation Z.102 contains a part of the Specification and Description Language Recommendations for SDL‑2010 that extends the semantics and syntax of the Basic language in Rec. Z.101 to cover the full abstract grammar and the corresponding canonical concrete notation. This includes features such as continuous signals, enabling conditions, type inheritance, and aggregate composite states.

7.3 Shorthand SDL‑2010 - Z.103

The actual subtitle is "Shorthand notation and annotation in SDL‑2010, but "Shorthand SDL‑2010" is introduced as a term to refer to the language defined by Z.103 combined with Z.101 and Z.102.

Recommendation Z.103 contains the part of the Specification and Description Language Recommendations for SDL‑2010 that adds shorthand notations (such as asterisk state) that make the language easier to use and more concise, and various annotations that make models easier to understand (such as comments or create lines), but do not add to the formal semantics of the models. Models transform shorthand notations from the concrete syntax of Rec. Z.103 into concrete syntax of Rec. Z.102 or Rec. Z.101.

7.4 Data and action language in SDL‑2010 - Z.104

Recommendation Z.104 contains the part of the Specification and Description Language Recommendations for SDL‑2010 that adds the data and action language used to define data types and expressions. In SDL‑2010 it is allowed to use different concrete data notations, such as the SDL‑2000 data notation or C with bindings to the abstract grammar and the Predefined data package.

The underlying data model is fundamental to behaviour and provides sorts of data such as Boolean and Integer that are used in other language features. For that reason this underlying model and an overview of predefined data sorts and constructs is given in Z.100 annex D.

7.5 SDL‑2010 combined with ASN.1 modules - Z.105

Recommendation Z.105 provides a mapping for ASN.1 modules to features defined in rest of the Specification and Description Language Recommendations for SDL‑2010, so that the ASN.1 modules define data items that can be used with the rest of SDL‑2010.

7.6 Common Interchange Format for SDL‑2010 - Z.106

Recommendation Z.106 provides alternative textual syntax for the graphical syntax items defined in Z.101 to Z.105 that can be used as a Common Interchange Format (CIF) between SDL‑2010 tools. The basic level of CIF provides only a textual equivalent of graphical items. The full CIF is intended for the interchange of graphical SDL‑2010 specifications (SDL-GR) so that the drawings are recognisably the same.

8. Formal definition (Annex F to Z.100)

The maintenance of the formal definition needs to be considered, and the most likely that the formal definition work will rely on a metamodelling.

The current plan is that no formal definition is provided for SDL‑2010, due to a lack of resources to modify the existing model or generate a new one. Instead the published Z.100 Annex‑F for SDL‑2000 is referenced. It is therefore note this is out of date, but in combination with the obsolete 2007 version of Z.100 (for SDL‑2000) provides a more formal definition for SDL‑2000 than currently available for SDL‑2010. Most of SDL‑2010 is intended to be unchanged from SDL‑2000, therefore Annex F to Z.100 with the obsolete 2007 version of Z.100 provides more detail than Z.100 to Z.106 for SDL‑2010. If there is an inconsistency between Annex‑F to Z.100 for SDL‑2000 and other parts of Z.100 to Z.106 for SDL‑2010, it is either because there is an error in Z.100 to Z.106 or because there is a specific change to SDL‑2010 compared with SDL‑2000. If a change from SDL‑2000 is not documented in Z.100 to Z.106, further study is needed to determine if the inconsistency is an error or intended.

If work is done to replace the formal definition, alternatives are to update the existing model or completely replace it with a new one, in which case a different approach (such as metamodelling) might be considered.

9. Meta-language issues

For further work and maintenance on SDL‑2010, some extensions to the language meta-grammar may be beneficial. In this respect the Z.111 standard is relevant, and it needs to be considered whether to update Z.111 to further support any approach taken for SDL‑2010 for other ITU languages.

10. Progress and status: August 2011

Since the April 2011 meeting work has continued on editing Z.101, Z.102, Z.103 and Z.104.

By the meeting end of May 2011:

Z.101, Z.102, Z.103 existed in what was probably its near final form;

For Z.104 a substantial draft existed in what is probably its near final form, but should be reviewed to take into account allowing different concrete syntax forms. Annex 3 is the current "Outline proposal for plug compatible SDL‑2010 data". In addition, it was proposed in February 2011 that reference data types are an issue "for further study" and text to this effect should be put into the appropriate places in Z.104 (and probably Z.100 and Z.101).
Z.105 needed to be reviewed.

Z.106 needed to be updated to refer back to the Z.101 to Z.104. A few textual syntax constructs are deleted in Z.101 to Z.104 and these may need to be moved to Z.106. A few concrete syntax constructs in Z.101 to Z.104 have been renamed from SDL‑2000.

Some refinements have taken place since the July 2011 meeting.

The intention is that SDL‑2010 should be ready for consent at the end of the September 2011 meeting. The ambition was to consent Z.100 to Z.106, but Z.106 has lower priority and it likely to be postponed until the following meeting. After the August/September SG meeting work on the Implementors Guide, and Z.109 (and Z.106 if necessary) can then proceed. There remains a number of actions items in Annex 2 that need to be checked in SDL‑2010.

With respect to the language name 'SDL‑2010' it was agreed December 2010 meetings not to change this, and the decision was confirmed at the April 2011 meeting.

ANNEX 1

Language Changes

The following are a collection of changes in SDL‑2010. This list does not necessarily document every change.

11. Changes list

11.1 Synonym
Synonym is changed to be a "read only variable" and be added to abstract syntax. UML attributes that are read-only can then be mapped to the abstract syntax for synonym.

11.2 Lower bound of agent instance sets
It is allowed to specify a Lower-bound on agent instance sets, which by default is zero (as at present). An attempt to interpret a stop in an agent in an instance set that is already at the Lower-bound causes the predefined exception OutOfRange to be raised. If the exception is not handled (the only possibility if exception handlers are deleted), the future behaviour of the system is undefined. This allows the constraint that the lower bound on instance sets in UML SDL to be simply mapped.

11.3 Signal identifier sets

In-signal-identifier-set and Out-signal-identifier-set are extended to contain interface identifiers (see 10.4 Signal List), so that an interface that includes other interfaces can more easily be mapped from UML.
11.4 Signals for remote procedures and remote variables on gates, not channels.

The remote procedure and remote variable models used to put the implicit signals on channels, but these are placed on gates, and there are implicit gates for the reverse direction instead of an implicit channel. The forward channel is explicit or implicit and has the signals derived from the gates. The reverse channel is an implicit channel created between these implicit gates. The UML SDL mapping to SDL is then easier, because the implicit signals on ports map to signals on gates.

11.5 Input via

A Trigger with a non-empty port corresponds to an input via – a new feature in SDL‑2010. The UML SDL restriction that the port of a Trigger shall be empty can be removed, and a definition how this port maps to the SDL‑2010 abstract syntax added.
11.6 Timer supervised states
SDL‑2010 is extended to cover timesupervised states to support TimeEvents. Every transition leading to the state from another state (or a start) sets an implicit timer or an explicit. The timer is not set or reset when the state leads to itself via an empty transition (for example in an implicit transition). If the timer expires while in the state, the specified transition is taken. If a non-empty transition or a transition to another state is taken, the timer is reset.

11.7 Unicode names

SDL‑2000 only handles T.50 (International Reference Alphabet) characters except in annotations. UML allows Unicode. This is not really an issue for UML SDL because any Unicode name can be systematically mapped to T.50 name using a mapping (such as the IETF Punycode RFC 3492 - an algorithm that uniquely and reversibly transforms Unicode strings into the limited character set supported by the Domain Name System). But to refer to such a Unicode name in some SDL‑2010 part (to be used with the UML SDL part) requires the limited character form to be used in the SDL‑2010, which implies (1) the user must know the mapping; (2) SDL‑2010 allows all the characters in names used by the mapping.

SDL‑2010 is extended to allow Unicode names. As far as the SDL abstract grammar is concerned the issue is only to have a unique Token from the mapping of a name (whether Unicode or not). The concrete syntax is extended to Unicode. The first 127 characters are taken to correspond to T.50 (as before). Two names have the same Token if and only if they have the same UTF-8 encoding.
12. Changes considered to support Z.109 but not included
12.1 Internal transition
Should SDL‑2010 cover internal transition? (this occurs without exiting or entering the source state, therefore does not cause a state change, and means that the entry or exit condition of the source state will not be invoked). An internal transition can be taken even if the state machine is in one or more regions nested within this state, and the restriction on UML SDL can be removed.

12.2 Abstract grammar for loops

The abstract grammar for loops is an embedded part of Compound-node in (Z.100 11.14.1), but the relationship between the loop concrete syntax in Z.100 11.14.6 and the abstract syntax in Z.100 11.14.1 is complex. If specific abstract syntax for loops in Z.100 is introduced the mapping from UML may be simpler. This issue applies for both LoopNode stereotypes.

ANNEX 2

SDL‑2000 Action Items

References:

TDw6xx. nn[.mm] is TDw6xx, section nn[.mm] of an Experts Meeting. w is a letter, xx are digits.

Before Apr 2000 letter w (usually) 1st letter of the meeting location (e.g. T= Toulouse)

For example TDT612.3.4 is the Toulouse meeting temporary document 12 paragraph 3.4
TDwxx.nn[.mm] is TDwxx, section nn[.mm] of an Experts Meeting. w is a letter, xx are digits.

The letter w was allocated for each meeting starting with the A = Oslo April 2000

For example TDC12.4 would be for meeting 'C' temporary document 12 paragraph 4
TDxx.nn[.mm] refers to a TD from the Geneva 2000 SG10 meeting.
T01-3xxx.nn[.mm] refers to a TD of SG17 2001-2004.
T05-3xxx.nn[.mm] refers to a TD of SG17 2005-2008
T09-3xxx.nn[.mm] refers to a TD of SG17 2009-2012
An expert’s name, followed by a date, refers to an email sent by that expert regarding this issue. Emails later than 26 Nov 2000 can be found at <http://sdl-forum.org/Archives/meeting/>.
A reference to Delayed Contribution (D10.xx nn[.mm]) is for SG10 2001-2004.
A reference to Delayed Contribution (D17-01.xx nn[.mm]) is for SG17 2001-2004.
A reference to Delayed Contribution (D17-05.xx nn[.mm]) is for SG17 2005-2008.

Tables:

The tables below summarise open items that have been agreed upon during Experts meetings. Each item in the table is given a reference number (such as Open 1) for reference in other documents. Any such reference needs to refer to the issue of this document, as the numbering is automatic. The second column gives the Expert(s) who originally accepted responsibility for ensuring completion of that item (see initials listed under “who” below). However, many of these names are only partially relevant because some of the individuals have not participated in the work for some time. This document is derived from TD3313. TD3313 was derived from TD3187. TD 3187 was derived from TD3108R1. TD3108 was derived from TD3053 of the SG17 meeting in Moscow April 2005, which was derived from TD3251 of the meeting in Geneva, July 2004.

Type

Items are classified as Deficiency (D), Clarification (C), or (F) Future Extensions.

Priority
Items are triaged into high (1), medium (2), or low (3) priority.

Who

	AE -Anders Ek
	All – Everyone
	AP - Andreas Prinz

	BMP - Birger Møller-Pedersen
	EH - Eckhardt Holz
	Hum - Humboldt Univ

	MvL - Martin von Lövis
	RR - Rick Reed
	TW - Thomas Weigert

14Table 1 Open to do items.

Table 2 Open to do items related to data.
17
Table 3 Solution determined but not included in Z.100.
21
Table 4 Open Questions or Actions.
22

A (w indicates that the issue was agreed at the w meeting where w= P for Ottawa June 2004 experts' meeting + Geneva July 2004, Q = Windermere Jan 2005 + Moscow April 2005, R = Grimstad Jun 2005, S = Windermere, Sep 2005, T = Geneva Oct 2005, U = Geneva Feb 2006, V= Jeju Apr 2006, W = Kaiserslautern May-Jun 2006, X = Paris Sep 2006, Y = ETSI Oct 2006, Z = Geneva Dec 2006, AB = Geneva Apr 2007, AC = Geneva Sep 2007, AD = Geneva Apr 2008, AE Geneva Sep 2008, AF = Geneva Feb 2009, AG = Geneva Sep 2009, AH = Geneva Apr 2010.

Table 1 Open to do items.

	Ref.
	Type
	Prio
	Who
	Action description

	Open 1.

D10.29/
TDC29
	C
	3
	RR
	Virtuality for a state diagram

The contribution proposes to allow defining a state diagram to be virtual with the intention that it should be possible to redefine the state diagram. It was agreed to put the issues on the Todo list and potentially also discuss it further.
April 2010: This should be done in SDL‑2010.

September 2011: This is added in SDL-2010. A (composite) state diagram is a shorthand and the <virtuality> gets copied to the type. This item can therefore be deleted in the next version of this document.

Open Items 1, 2, 3, 5 and 6 of Table 1 in April 2010 were resolved and proposed for removal from the table and therefore have now been removed. The remaining item 1 is also now resolved and can be removed on the next update of the table.

Table 2 Open to do items related to data.

This list is an input to the review of data in SDL for SDL‑2010. Because many of the items in the list in April 2010 were concerned with object types, the issues may become irrelevant. For that reason items 3, 7, 8, 10, 13 and 15 of the April 2010 list have been removed. Item 9 of the April 2010 list concerned inheritance of choice types, but is now removed because inheritance is not allowed for choice in SDL‑2010. Item 10 of the April 2010 list concerned handling of exceptions, but is now removed because exception handling in not included in SDL‑2010.

	Ref.
	Type
	Prio
	Who
	Action description

	Data 1
TDD03r1.8

Was open 4 in April 2010.
	C
	3
	TW
	It was pointed out that the current definition of the Make operator includes all fields of the data type including private and protected fields. This violates the idea behind the distinction between private, protected, and public fields. It was agreed to study this topic further.

Discussed solutions where:

· Define only a nullary public Make operator.

· Only define public Make operators by default. Protected and private make operators would have to be explicitly added by the user.

· Define different private, protected, public Make operators by default, if private, protected, or public fields, respectively, are present in the data type definition

September 2008: Requires further work. Harmonize with UML2?

September 2011: Issue not resolved.

	Data 2
Geneva 2001,TD48

Was Data 5 in April 2010
	C
	3
	TW
	Can we allow redefined/finalized in <argument virtuality> also, i.e., just use <virtuality> there as well?

September 2011: Issue for Z.10x Object-oriented data

	Data 3
TDD03r1.3

Was Data 11 in April 2010.
	F
	3
	AE
	It was discussed whether it should be allowed to assign to this. It is currently not allowed, but there may not be a problem if one were to allow such assignments. It was agreed to investigate this issue further.

September 2011: Still waiting for further investigation. Potentially useful.

	Data 4
TDD03r1.3

Was Data 12 in April 2010
	F
	3
	AE
	Optional fields were discussed. It was agreed that there might be interest in a method that ‘unsets’ an optional field and makes it not present.

September 2011: To be done in Z.10x for Object-oriented data.

	Data 5
TDD03r1.11

 (was Open 7 in T05-3108R1)

Was Data 14 in April 2010
	D
	1
	RR
	Agreed to investigate how concatenation of Bitstrings behaves with respect to padding. It was unclear what the semantics of ASN.1 was for Bitstrings. It was agreed that for most users the intuitive semantics of the padding would be that the padding is done in the leftmost bits of the string. It was also agreed that intuitive semantics is that the rightmost bit is the least significant bit. This has an impact on the num operator. num(‘10’B) should with this semantics give 2, not 1.

September 2011: Still to be done. Needs consensus.

Table 3 Solution determined but not included in Z.100.

	Ref.
	Type
	Prio
	Who
	Action description
	Res.

	There are currently (September 2008) no cases of solutions that have been determined but not added to the Implementers’ guide and Z.100(11/07). New issues to be resolved in SDL‑2010.

Table 4 Open Questions or Actions.

	Ref.
	Who
	Question or Action description

	Items in this table have probably been resolved or are obsolete or both, but the list has been retained so that a check can be made that this really is the case before the items are deleted.

	Question 1
(Question 1 April 2010)
	RR
	See email from RR, Tue 9/26/00 2:21 PM:

References to types - followed by an identifier in PR or [qualifier] name in GR. There IS some inconsistency between the PR and GR here, and I [RR] think it was agreed it should be optional qualifier followed by name in both cases - the rationale being it is that the reference corresponds to defining instance of the name.

For package references there is again an inconsistency. PR has
 [<qualifier>] name
whereas GR has <identifier>.

September 2011: - Needs to be checked in SDL‑2010.

	Question 2
TDB03.5.2

(Question 2 April 2010)
	
	Implement changes in TDB03.5.2

This concerns complete valid input signal set and, the handling of implicitly consumed signals and asterisk input. It is clear that:

" An <asterisk input list> is transformed to a list of <input area>s, one for each member of the complete valid input signal set of the enclosing <agent diagram>, except for <signal identifier>s of implicit input signals introduced by the concepts in 10.5, 10.6, 11.4, 11.5 and 11.6 and for <signal identifier>s contained in the other <input list>s and <save list>s of the <state area>."

Is inadequate for the case of a <asterisk input list> in a state partition. In this case the valid input signal set of a partition should be used. For a procedure used in different partitions, the valid input signal set will be dependent on which partition it is called in.

September 2011: may require further study

	Question 3
TDB03.8.2

(Question 3 April 2010)
	
	Virtuality for save is not kept in the abstract syntax. It needs to be checked that this is correct and clarified if virtuality has a runtime semantics.

September 2011: It needs to be checked if this is still an issue in SDL-2010

	Question 4
TDA13.3

(Question 6 April 2010)
	TW
	Referenced data, signal and interface definitions: Do we allow data definitions etc., to exist as stand alone textual definitions?

September 2011: this is not allowed in SDL-2010. It is suggested to drop this item.

	Question 5
TDB20.44

(Question 8 April 2010)
	TW
	In rule <expression>: <value returning procedure call> vs. <operand>: this is really bad, because the precedences are harmed. AP suggestion: use the following productions

<value returning procedure call> ::=

<procedure call> | <remote procedure call>
<simple value returning procedure call> ::=
 { <procedure identifier> | <remote procedure identifier> } [<actual parameters>]

and insert an alternative like below

<operation application> ::=

<simple value returning procedure call>

|
<operator application>

|
<method application>

TW: Note that we cannot move the this down to operator application et.al., neither can we move the variant of procedure call using actual context parameters. It is not clear whether the “harm” to the precedences can actually arise. Look for an example where the fact that one has to parse some variants of procedure call together with operator application will cause a problem.

September 2011: needs resolution, but it is suggested to drop the issue

	Question 6
B20.x

 (Question 9 April 2010)
	TW
	Consider fixes to “nice to haves.”

September 2011: Needs review.

Question 4 of April 2010 is dropped because there is no exception handling in SDL-2010.

Question 5 and 7 of April 2010 is dropped because statements syntax and semantics rewritten in SDL-2010.

Question 10 of April 2010 is removed because syntax considerably revised for SDL-2010.

ANNEX 3

Outline proposal for plug compatible SDL‑2010 data

Note: This Annex is based Annex 3 of TD1622, which was based on TD 0506 itself a re-issue of TD0085 of the February 2009 meeting, a re-issue TD3575 of the September 2008 meeting, a re-issue of TD3427 of the September 2007 meeting. It has been revised in September 2011.

The (inconclusive) email exchange of TD0217 stimulated by TD0085 in February 2009 has been appended. The text was reviewed and another change made was to change the language name to SDL‑2010. The proposal in TD1622 for indicating the data binding language is revised so that it is part of the <package use clause> of diagrams, though it is intended it can usually be omitted and specified by some kind of directive not included in the diagrams.

The proposal in this Annex is that for data there should be a “plug compatible module” (similar to MSC) with the SDL‑96 syntax being one instantiation, and C++ or C (as in SDL‑RT) being another possibility. SDL‑2000 syntax is allowed but object is no longer an alternative. The key issues to are therefore

1. Which syntax rules are replaceable;

2. The constraints on the data models.

The essence of the Specification and Description Language is the communicating state machines including the structure of agents and the communications paths between them. Data is essential for the communication of information between the state machines and with the environment. Although SDL has a well‑defined data language, in tools this is usually translated into some other programming language such as C, C++ or Java before being compiled into executable code. An alternative approach (used in SDL‑RT) is to use the data and expression language of C (or Java or some other programming language), while keeping the structure and communication of the state machines in the SDL notation.

A further issue was that there were a number of changes in SDL‑2000 to update the data language with a ‘modern’, less idiosyncratic concrete syntax and also allow reference (object type) elements as well as the SDL‑92 elements associated with values (called value type in SDL‑2000). These syntactic and reference‑types changes to SDL‑2000 and have not been implemented by tools (at least not the most widely used ones). The consequence is that in models produced using the ‘SDL’ tools, the data syntax is from SDL‑92/SDL‑96, and to make these models valid, Annex B has been added to SDL‑2000 for backwards compatibility.

Another consideration was the use of ASN.1. Often the data exchanged for protocols is expressed in ASN.1 and therefore the ability to define data in terms of ASN.1 types as defined in Z.105 is a useful feature. In SDL‑2010 operations for ASN.1 data types are incorporated in Z.100, so that ASN.1 data types can be used in expressions and the corresponding Z.105 determines how to map the ASN.1 data types onto SDL‑2010 data types. Z.105 requires that the ASN.1 types be defined in a separate module, which is treated as a package in SDL‑2010. It is assumed that SDL‑2010 will include at least the data types defined in the package Predefined of SDL‑2000 with each data type including at least the operators defined in SDL‑2010. The data types are: Boolean, Character, Charstring, Integer (including the subtype Natural), Real, Duration, Time, Bit, Bitstring, Octet, Octetstring. The parameterised types String, Powerset, and Bag need to be supported for ASN.1. The parameterised data types Array and Vector should be supported for compatibility. Semantic equivalents of structure and choice need to be supported for ASN.1, and some equivalent of a literals list for defining an enumerated type. In the concrete syntax these types need not have the same names, but for use with the CIF format, compatibility with ASN.1 and models defined using the SDL‑2000 the names shall be converted to the names for SDL‑2000 in the abstract syntax.

The package Predefined implicitly includes the Pid data type for values of references to agent identities. This data type and the derived pid data types that can refer only to agents that provide a specific interface need to be supported, because these are used in outputs.

The Integer data type, the range and precision of Real, Duration and Time, and the length of String, and currently unbounded, and there is a good case for including in the language some derived types with bounds and associated exceptions. Similarly, it may be desirable to prohibit data types with unbounded number of values as the index parameters of arrays, or the element type of Powerset or Bag. As of April 2011, the idea of bounded (parameterized) data types is neither accepted nor rejected, but it they will not be included in the initial version of SDL‑2010.

It has been decided to remove reference (object type) elements of the language. The abstract grammar and semantics of SDL‑2010 is changed to remove Object‑type‑definition. When the issue was discussed in September 2008, it was agreed that the 'Own and ORef Generators' implemented within the Telelogic SDL Suite tool could be considered as a basis the SDL‑2000 reference types. In April 2011 the status was that reference data types should be classified as "for further study", though grammar of SDL‑2000 for them would be removed from the initial version of SDL‑2010. Work by correspondence has led to a draft new Recommendation where object-oriented data is allowed, but is handled by an aggregation-kind for variables, parameters, procedure results and expressions that determines how assignment behaves. The aggregation-kind is separate from the sort of an item. An aggregation-kind of part is the default and applies when no aggregation-kind is given. An aggregation-kind of part means that the data item is associated with a copy of the value assigned to it (that is, normal value assignment). The alternatives are ref and own, which handle objects so that when there is an assignment to variable with ref or own, the variable is associated with an object. There can be many ref variables associated with an object, but only one own variable. As of September 2011, Z.101 to Z.104 have been drafted so that it should be possible to extend SDL‑2010 with an additional Recommendation in 2012 for object-oriented data. As of September 2011 it remains to be studied whether this Object-oriented data Recommendation makes it easier (or more difficult) to allow the concrete syntax for other languages to be used with SDL‑2010.
The concrete syntax (whether SDL‑92, SDL‑96 or SDL‑2000 or some other language) that is used shall map to the abstract grammar and semantics of SDL‑2010. It is assumed that even though the syntax may look like C, C++, Java or some other language the semantics are defined by SDL‑2010. The binding to the SDL‑2010 abstract grammar is permitted to invoke complex transformations to achieve the mapping, and constraints are allowed to exclude constructions permitted by the concrete syntax that cannot reasonably be mapped. A model that includes constructs that do not map to SDL‑2010 does not conform to the SDL‑2010 language. A tool that handles constructs that do not map to SDL‑2010 abstract grammar and semantics shall provide an indication if such constructs are used.

The relevant abstract syntax rules are (some rules implied by the listed rules, or that collect together listed rules are omitted – for example Operation‑name is implied by Operation‑signature and Pid‑expression includes self, parent, offspring and sender):

Data‑type‑definition, Value‑data‑type‑definition, Interface‑definition, Data‑type‑identifier, Sort‑reference‑identifier, Sort, Dynamic‑operation‑signature, Static‑operation‑signature, Operation‑signature, Literal‑signature, Literal, Literal‑identifier, Literal‑name, Syntype‑identifier, Syntype‑definition, Syntype‑name, Parent‑sort‑name, Range‑condition, Expression, Constant‑expression, Active‑expression, Equality‑expression, Conditional‑expression, Self‑expression, Parent‑expression, Offspring‑expression, Sender‑expression, Timer‑active‑expression, Timer‑remaining‑duration, Any‑expression, State‑expression, Operation‑application, Operation‑identifier, Range‑check‑expression, Variable‑definition, Assignment, Assignment‑attempt.

For the purpose of this proposal the syntax rules <variable definition>, <data definition>, <statement list> and <expression>, are taken as the points of syntax variation. Further study may indicate this is not the best choice, or that there are additional syntax rules that should be considered.

By default it should be assumed that an SDL‑2010 specification is bound to the native SDL‑92/‑96/‑2000 (derived) data syntax. The intention is that models created using existing tools can be used in SDL‑2010 tools with no (or very little) change. For models that are using alternative data syntax, the binding needs to be specified. One possibility is that on each occurrence of one of the syntax variation points, the binding is determined from the actual syntax given. However, this implies that tools should be able to handle multiple syntaxes and that different syntax could be used almost on a line-by-line basis, which could make models unreadable. The other extreme could be to require that a complete <sdl specification> uses only one binding and that is specified once in the <sdl specification>. Although logically this would be part of the model, in practice it could be implied by the tool used (because it only supports one binding) or as an invocation parameter to the tool. A more flexible approach could be to assume that each <package diagram>, each <referenced definition> and the <system specification> can be bound separately. This would allow the possibility of combining items using different data syntax (and maybe different tools) into a complete <sdl specification>.

An initial proposal was therefore:

<sdl specification> ::=

{

{ <data binding> { <package diagram> | <system specification> } }

{ <data binding> <referenced definition>}*

 <macro definition>*

}set
<data binding> ::=

[default | <name>]

where the <data binding> for the default syntax is to omit data binding or the keyword default. Any other binding is denoted by a <name> defined for that binding. However, the <data binding> of the above proposal is unsatisfactory because the text is not enclosed in a symbol and the <name> is not formally defined.

To overcome the issue of the <name>, each alternative language binding introduces its own package that is used instead of the package Predefined, and the binding is tied to the <name> and use of that package. For example, it is assumed that for a C language binding the package C‑Predefined is used. The <data binding> is placed in a <package use clause> of a <package use area>, so that it is enclosed in a symbol.

<package use clause> ::=

[<data binding>]

use <package identifier> [/ <definition selection list>] <end>
<data binding> ::=

default <package identifier>
Each diagram that uses the SDL‑2010 defined concrete syntax for data implicitly or explicitly includes default Predefined in its <package use clause>. Each diagram that uses the C syntax for data, implicitly or explicitly includes default C-predefined in its <package use clause>. A referenced diagram that is logically included in another diagram, implicitly includes the <data binding> of the enclosing diagram, unless a specific <data binding> is given. Therefore it is only usually necessary to give the <data binding> for the package for the system type or for the <system specification>.

If the <data binding> is omitted the diagram, the implicit <data binding> is default Predefined if not otherwise specified. It is allowed to specify the implicit <data binding> by means such as analysis directives or tool features not defined by SDL‑2010.
In SDL‑2000 a <variable definition> can occur in an <agent text area>, <procedure text area>, <composite state text area>, <operation text area>, <entity in procedure>, <entity in operation>, and <select definition>. The SDL‑2000 construct starts with the keyword dcl and is terminated by an <end>. It is suggested that any alternative syntax for variable definition starts with a keyword and ends with an <end> or a semicolon. The starting keyword shall not be the same as the starting keyword for a syntax alternative to <variable definition>.

In SDL‑2000 a <data definition> can occur in a <package text area>, <agent text area>, <procedure text area>, <composite state text area>, <operation text area>, <entity in procedure>, <entity in operation> and <select definition>. The SDL‑2000 construct starts with a keyword (use, virtual, redefined, finalized, abstract, object, value, syntype, interface, synonym) or in SDL-92 style newtype and is terminated by an <end>. It is suggested that any alternative syntax for <data definition> starts with a keyword and ends with an <end> or a semicolon. The starting keyword shall not be the same as the starting keyword for a syntax alternative to <variable definition>.

In SDL‑2000 a <statement list> can occur in a <task body>, <compound statement>, <procedure definition> and <operation definition>. A <statement list> can be an assignment and therefore can start with identifier or it can be a statement starting with a keyword or a compound statement enclosed in braces. It is allowed to omit the semicolon at the end of a <statement list> when it appears as a <task body>. A <task body> can be a single assignment. A <statement list> is enclosed in braces or a <task symbol>, so it should be possible to replace the statements with any syntax in which the braces are matched.

In SDL‑2000 an <expression> can occur in a <return body>, <actual parameter list>, decision <question>, <continuous expression>, <provided expression>, as part of <statement list> (in various statements such as <assignment>, <if statement>, <local variables of sort>, <loop step>, <loop variable indication>, <loop variable definition>), bracketed as a <primary> in an <expression>, <conditional expression>, <expression list> for timer identification, time for <set clause>, initialization (<variables of sort>, <field default initialization>, <default initialization>, <timer default initialization>), <internal synonym definition item>, selection Boolean expression (<select definition>, <option area>, <transition option area>). It needs to be checked, but it seems that in all these cases that the start of an <expression> can be determined by context and the end of an <expression> is distinguished from the following item being some separator such as a comma or semicolon or keyword. Therefore in the syntax for expressions it is required that any enclosed occurrences of the terminator symbols are enclosed in matched brackets of some form.

Consideration of the above syntax indicates that it should be possible to use alternative syntax, but there are a number of cases to consider and consequently defining the binding a particular alternative notation will be a significant amount of work. The decision to be made is whether this is worthwhile.

The previous February 2009 version of the above text stimulated an inconclusive email discussion, which is recorded below (and can also be found in TD 0217 Email discussion on plug compatible data (TAF23) of the February 2009 meeting).
Thomas Weigert at thomas.weigert@hengsoft.net wrote on 10/2/09 03:47:

Regarding T09-SG17-090211-TD-WP3-3xxx TAF17 SDL2008 data.doc.

As we discussed, the goal is laudable, technically achievable (albeit tricky), but its impact on the community is difficult to estimate.
Key issues are:

· Is only the syntax substituted, or does the semantics change accordingly? I.e., if "C" syntax is used, is the semantics "C" or SDL?

· Do we understand the impact of semantic variation (rather than syntactic variation) on the core of SDL?

· From you chosen syntactic variation points I assume that anything that appears in text should be subject to the chosen syntax, i.e., no matter how small the text snippet (e.g., task), it will be in the chosen syntax.

· Is there a demonstrated need? Not even UML has gone to that extreme.

Cheers, Th.

Rick Reed TSE at rickreed@tseng.co.uk wrote on 10/2/09 16:39:

To quickly react to the key issues raised by Thomas, my understanding of the current status of agreement is:

1.
Syntax or Semantics

The intention is to allow alternative concrete syntax (CS), but with the same (standardized) semantics. That is it should be possible to map the alternative syntax to the (Z.100 series) Abstract syntax (AS) and the semantics should be based only on the AS. We will probably find a number of issues in this approach, such as

· Guest language CS constructs that cannot be mapped to the AS (and therefore should be invalid),

· Possibly AS for which there would not normally be CS (if only standard syntax of the guest language is allowed), and

· Possibly the semantics of the CS as mapped to the AS are (not quite) what the user might expect (always assuming it is actually well-defined in the guest language).

2.
Semantic variation (SeV)

If we can manage the intent of (1) above, there should not be any SeV.
If we find the guest language CS has some ‘essential’ features, these should (of course) be added to the Z.100 series.
This will not in practice really remove all SeV, because the Z.100 series standards do not (and in my opinion should not) prevent tools from supporting language extensions.
However, the Z.100 series standardizes a language (not tools) and if a model that uses such extensions it is not valid. As far as tools are concerned, a tool is considered valid if it identifies (with a warning) non-valid models: it does not have to reject them. This is how the Z.100 series is at the moment.

3.
Syntactic variation (SyV)

I will have to revisit the work I did, but I think the SyV points correspond to an expression, rather than ‘any text’. I was actually imagining that the language would require consistency within one diagram and/or within one scope. In that case, we would probably need directives in the language and/or to the tool(s). This might be similar to the way we currently handle ASN.1 modules.

4.
Need

The argument has been made by PragmaDev backed up by success of SDL-RT. As I understand it, in reality implemented UML models handled tools by are ‘that extreme’ as the behaviour semantics is given in some programming language (often C or Java). It could be argued they are even more extreme, because the semantics may be determined by the CS (not by the AS).

On the other hand, the decision has not yet been made. This may or may not be in ‘SDL‑2010’: we may decide to include it, defer it or put it on the list of ‘closed items’.

Thomas Weigert at thomas.weigert@hengsoft.net wrote on 11/2/09 14:17:

The most likely languages that might be plugged in given our market would be Java, C++, and C. It will not be difficult to map these languages syntactically. However, then you will be in a situation where a user will see some text (say some action specification) where it looks like Java (C++, C) but it does not behave like what the user would expect. This because the semantics of each of these languages differs from what is in SDL2000 and SDL96, in particular with respect to the semantics of some or all of dispatch of methods, variance of methods, semantics of assignment, semantics of conditional statement. The differences will be subtle.
Th

� Whether ASN.1 compilation is done in a separate tool or not is a tool issue, not a language issue.

� Exceptions are still raised by certain constructs (such as indexing OutOfRange), but cause the further behaviour of the system to be undefined because they are not handled.

	Contact:
	Rick Reed, TSE

The Laurels Victoria Road, Windermere

Cumbria LA23 2DL United Kingdom
	Tel: +44 15394 88462

Mob: +44 7970509650

Email: rickreed@tseng.co.uk

	Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of the ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of the ITU-T.

