
Toolbased Language Development

Joachim Fischer1, Eckhardt Holz2, Andreas Prinz3, and Markus Scheidgen1

1 Department of Computer Science, Humboldt Universität zu Berlin
Unter den Linden 6, 10099 Berlin, Germany

{fischer,scheidgen}@informatik.hu-berlin.de
2 Hasso-Plattner-Institut für Softwaresystemtechnik GmbH

Prof.-Dr.-Helmert-Str. 2-3, D-14482 Potsdam
EckhardtHolz@gmx.de

3 Faculty of Engineering, Agder University College
Grooseveien 36, N-4876 Grimstad, Norway

andreas.prinz@hia.no

Abstract. This papers shows how to tackle the problem of ever larger
languages and of the combination of multiple languages. The central idea
is the foundation of the language definition by a metamodel driven ap-
proach that is supported by language engineering tools. Thus the devel-
opment and the further evolution of languages will be transformed from
the traditional paper-and-pen style into an engineering activity. This al-
lows an early detection of problems within the language definition and
increases the reliability of the language and the supporting tools.

1 Introduction

Developing high quality software in a cost effective manner is crucial for the
competitiveness of software industry, and continues to be a technological chal-
lenge. Today, a diversity of languages and notations is used, depending, e.g., on
the development phase and the viewpoints to be expressed. However, the use of
several notations in the same project often leads to ambiguities and inconsisten-
cies, jeopardizing the overall success of the project. To overcome this problem
and to achieve the full benefit of the languages, they are to be integrated both
syntactically and semantically.

An additional problem arises from the complexity of the single languages.
The monolithic style of language definition of e.g. SDL-2000 makes it not only
hard for the user to fully understand and apply the language but aggravetes also
the development of supporting tools. Today, five years after the finalization of
the Z.100 recommendation there is still not a tool available, that fully supports
SDL-2000. A hierarchical language definition consisting of a language core and a
series of enhancing building blocks accompanied with a clear list of compliance
points to syntactically and semantically integrate the single parts promises a
solution.

On the other side the development of SDL-2000 and especially the definition
of the formal semantics have shown that it is possible and feasible to use software

2

engineering tools already througout the language development. This leads to a
lower number of errors and inconsistencies in the standard and results in a
protoptypical set of tools supporting the language.

Moreover, there is a trend towards the use of languages that are tailored for
special problem domains and also towards integration of different languages; in
an OMG context this can be done by using the extension mechanisms of UML,
definitions of UML profiles, and also definition of new MOF [2] metamodels.
Tools that support definition and application of this type of languages are largely
missing.

It has been shown, that the combination of grammar based languages with
languages based on a metamodel is possible [3]. However, in general this requires
considerable amount of work compared to the combination of purely metamodel
based languages. In the latter case a very generic solution is possible. To over-
come this problem a transformation of the grammar based definition into an
metamodel is necessary. In [6] an approach is given, which combines the auto-
matic generation of an initial metamodel from a grammar with semi-automatic
model transformations and manual refinements.

Until today most approaches for the integration of languages are proprietary
to two concrete languages (e.g. SDL and MSC, SDL and UML, etc.) and are not
reusable. If the application of another language is required, many steps of the
previous work have to be repeated. Therefore we propose a general framework
for the metamodel based integration of languages.

This general framework is the key to the integration of the building blocks
as well as of different languages. It will allow the definition of languages on
all modelling and metamodelling levels including a proper exchange format for
models. This implies also the definition of languages in a modular fashion in-
cluding proper interfaces. This core can then be extended in different ways to
cover further, more language specific concepts, and is sufficiently flexible to sup-
port future language add-ins. Ultimately, the availability of a common semantic
middleware with the possibility of modular language description paves the way
for a new methodology of language design: languages can be customized from
a set of building blocks on a case to case basis, depending, for instance, on the
application context and the preferences of the system developer.

We will implement this strategy within the SMILE1 project. Our SMILE
project targets all the levels of the OMG four-layer metamodel architecture, us-
ing a basic representation to be used on all levels. This representation is called
FORM after its main construct Form2. The term carrier from the telecommu-
nication field has many similarities with our representation since all types of
objects and classes are to be carried (represented) with it. All levels, also the
lowest level, will be covered in our basic representation; this lays the ground
for executable UML with ”metadata facilities” and it also makes it possible to
specify how two neighboring levels fit together.

1 Semantic Metamodel-based Integrated Language Environment
2 We also consider FORM to mean ”Fantastic Organized Representation of Models”.

3

In order to integrate our apporach with traditional grammar based language
definitions of SDL and other ITU languages, we developed tool support for a
transformation into a metamodel based definition. This is accompanied by a
proposal for a hierarchical division of the language into a core language and
building blocks of enhanced features. Such a solution does not only help to man-
age the complexity of the language itself but does also supports the development
of dedicated tools.

Different solutions for the combination of the language core with the enhance-
ment building blocks are shown. These are not only applicable for the definition
of the language itself but also for the combination with other languages like
UML.

This paper is structured as follows. Section 2 gives an introduction to meta-
modelling and MDA as well as combination of models. Afterwards we give a short
description of the SMILE project as a way to solve the integration problems. We
discuss the first steps in Section 4, namely the basic FORM representation and
the transformation of a grammar based language definition into a metamodel. In
Section 5 we provide a deeper discussion of approaches for the combination and
integration of different languages. Finally we give some conclusions in Section 6.

2 Metamodelling

In many industrial sectors, the development of high quality software systems in
a cost effective manner requires mixing various specification techniques, reusing
existing software artefacts and capitalising existing know-how. This reality is ad-
dressed by the Object Management Group with the Model Driven Architecture
(MDA). This architecture is an approach to the full lifecycle integration and
interoperability of enterprise systems comprised of software, hardware, humans,
and business practices.

The MDA puts forward the idea that the growing complexity of software sys-
tems and the rapid rate of change in technology can be more effectively tackled
by putting models into the centre of system engineering. Modelling abstractions
enables the separation of platform-independent concerns from platform-specific
ones, so that developers can cope better with changes in technology. A signifi-
cant feature of the MDA paradigm is the support it gives engineers for building
application models that can be conveniently ported to new, emerging technolo-
gies - implementation languages, middleware, etc. - with minimal effort and risk.
In order to take full advantage of the model driven development techniques it is
important:

– to be able to reason at the model level independent of the modelling lan-
guages

– to have interaction parts of the model described using different languages
– to use the model for more than documentation purposes (e.g. in verification,

simulation, code generation, testing, etc).

When it comes to really support these items, it is quite clear that there is no
single methodology supporting all of these things. Moreover, as the primary goal

4

of MDA is working on the model, a successful methodology would have to take
into account the existence of several languages for system modelling. There is,
however, also no support currently for this. Finally, a real model-driven approach
would also include the possibility to define domain-specific languages with se-
mantic background readily. Therefore an important prerequisite to get MDA into
place is the existence of a real level-independent metamodelling environment.

There are already now several metamodelling environments, which are usu-
ally bound to one or two levels. Moreover, all these environments apply a built-in
semantics to their constructs, which cannot be adapted by users. What is nec-
essary is an environment that allows arbitrary semantics attached to the meta-
model with maximal flexibility. Today the only way to attach semantics is by
stating static constraints. This is to be extended to also allow the formulation of
other kinds of semantics, especially dynamic semantics. Moreover, the connec-
tion between metamodelling and the classical grammar approach can be used to
allow language tools based on modular language definitions.

2.1 Model Combinations

Modular language definitions open the door for the combination of modelling
languages. Several research projects dedicated to this topic have taken the ap-
proach to act at the syntax level of either SDL, or UML, or both languages, to
make them compatible. In contrast, we are focusing on a common semantic level
as a basis for a smooth integration of different semantic concepts and effectively
establishing the relationship between the languages in a clear and unambiguous
manner. As a consequence no one-to-one language translation is needed and real
interoperability between system parts written in various modelling languages is
possible.

A key issue for meaningfully combining several modelling languages relates
to their semantics. A precise semantics of each language is a basis for deriving a
well defined integration within a coherent and consistent modelling framework.
All the above languages have a formal semantics based on the mathematical
modelling paradigm of abstract state machines (ASMs). Note however that the
various semantic models cannot easily be combined, because the underlying se-
mantic concepts are different and require a tighter integration resolving funda-
mental issues of interdependency and interoperability, which will be featured by
our environment.

Tool builders already started implementing the combined use of these lan-
guages, which is possible because the language concepts of the three languages
are similar. However, the interfaces between the languages are not standardized
and are only defined ad-hoc. Moreover, the tools developed using these tech-
niques are not able to exchange their models.

2.2 Language Standards

The standardization bodies managing UML and SDL reacted to their respective
language community demands for combining the advantages of both modelling

5

languages. ITU introduced for SDL concepts and techniques inspired by UML
in the SDL-2000 release. SDL was enriched with concepts such as interface, as-
sociation, composite state machines, etc, and a new graphical syntax (la UML)
was defined as an alternative notation to the already existing one. With these
changes, it is now possible to make an SDL model looking very much like a
UML model. Related to this is an ITU initiative to define SDL as an UML pro-
file [Z.109]. Z.109 describes all SDL concepts in terms of UML, often using UML
extension mechanisms. The result is an ”SDL profile” for UML. OMG felt the
same need for rapprochement between UML and SDL, at least in terms of taking
advantage of the experience gained after tens of years of using the language in
system modelling. Therefore, in 2000 the action semantics proposal was finished,
taking the SDL algorithmic language as a means to express details of behaviour
in UML. The UML 2.0 definition represented another good opportunity to use
SDL know-how in the UML language definition. This is exactly what happened,
as the core team that worked at the definition of UML 2.0 contains main con-
tributors at the SDL definition. The result was indeed the ”export” of some
concepts that proved successful in SDL (like the static hierarchical structure,
the communication mechanisms and primitives, etc). Although beneficial for the
UML community, these efforts do not help the common use of UML and SDL
(they are at the same level as the SDL extensions inspired by UML).

3 The SMILE project

The central objective of the SMILE project is to create a semantic metamodelling
framework to allow definition and integration of computer languages. Included
in this project are also concrete integrated language definitions for system design
languages as UML, SDL, and SystemC. Another area of language definition will
be knowledge representation and reasoning in a web context; one example is
Topic Maps but also other languages might be defined and installed as language
plug- ins. More specifically, the following goals are to be achieved by the project:

– Conception and definition of a common semantic middleware (CORE)
– Definition of ways to attach semantics to the core
– Establishment of hierarchical system modelling language definitions
– Combined application of modelling languages
– Definition and application of Topic Maps
– Generation of public domain tools for the basic modelling activities.

3.1 Conception and definition of the SMILE-CORE

A common semantic middleware is the key to the integration of different lan-
guages. The SMILE-CORE will allow the definition of languages on all modelling
and metamodelling levels including a proper exchange format for models. This
will imply also the definition of languages in a modular fashion including proper
interfaces. This core can then be extended in different ways to cover further,

6

more language specific concepts, and is sufficiently flexible to support future
language add-ins.

Ultimately, the availability of a common semantic middleware with the pos-
sibility of modular language description paves the way for a new methodology of
language design: languages can be customized from a set of building blocks on
a case to case basis, depending, for instance, on the application context and the
preferences of the system developer. Composition of language building blocks
will be defined not only on a purely syntactical level, but also on a semantic one.
Furthermore, modular structuring of modelling languages also supports the de-
velopment of customized tools, for instance, for the generation of efficient code,
which may require certain language restrictions.

An essential part of the core is the definition of a common exchange format
that is shared not only among tool providers, but also among different languages.
This may lead to an entirely new technology of aspect-oriented tool building,
i.e., the provision of tools that focus on specific aspects of a system specification,
such as test case generation or consistency checks.

3.2 Definition of ways to attach semantics to the core

The central idea of this proposal is the explicit handling of semantic informa-
tion. Almost all current metamodelling tools have the semantics of the language
and the definition of the metalanguage built into their tools. We will design
our framework that it allows explicit ways of attaching semantics to the lan-
guage entities. This is achieved by considering the language entities as objects
according to the object-oriented paradigm and adding semantic attributes to
them. This way we will define several different sorts of semantic information,
e.g. static semantics, dynamic semantics, textual and graphical representation
as well as exchange formats. The ways to define semantics will be defined within
the framework itself. This is possible since we allow the definition of models and
metamodels on arbitrary levels of the hierarchy.

3.3 Creation of modular modelling language definitions

The first area of application of our framework will be the definition of system
modelling languages. In order to be widely applicable, system modelling lan-
guages tend to be expressive, extensive and complex. This, however, may inhibit
their use in domains such as embedded systems, where more streamlined, special-
purpose languages would be preferable. Therefore, the objective is to establish
a methodology of modular language definition much in the spirit of UML2.0.
Then we will decompose UML, SDL, and SystemC into a core language and a
set of building blocks that may then be selected and composed yielding reduced,
customized language versions, and that may even be extended by adding special-
purpose language elements. Furthermore, the core language as well as the lan-
guage building blocks will be enriched with a semantics enabling the automatic
generation of basic tools.

7

3.4 Combined application of modelling languages

The availability of the modular language definitions defined in the section above
enables the combined application of different modelling languages. This is pos-
sible because all the languages will share a common semantic base description.
Once this integration has been provided, it will be possible to specify parts of
a system using different, compatible modelling languages, and to combine them
into a single model. This finally gives a precise meaning to the conception of
a model driven architecture, as promoted in the context of UML. Furthermore,
the integrated model can be used for verification, simulation, testing, and code
generation.

3.5 Definition and application of Topic Maps

In order to have a wide spectrum of applications of our framework we will also
define languages that are intended to give basic meaning to web services. Specif-
ically we will define a language description for Topic Maps and enrich this with
the possibility to attach constraints, which is similar to giving static semantics
constraints.

3.6 Public domain tools for basic modelling activities

Given a formal language definition, it is feasible to automatically generate a set of
tools for basic modelling activities, such as syntax and static semantic analysis,
simulation, reference code generation, and translation to a common exchange
format. Experience with SDL-2000 has shown that the required information can
be extracted from a properly written standardization document, and that the
generation of the tool chain can be completely automatic. This means that as
soon as the language definition is complete, tools for basic modelling activities are
instantly available. This even holds for language subsets in case of hierarchical
language definitions, and provides extreme flexibility. With the generated tools
made public domain, commercial tool providers as well as research bodies will
be in a position to focus on advanced, special-purpose tools, instead of wasting
effort on basic tools and producing incompatible tool chains.

3.7 Methods and Success Factors

The research project described here is of considerable size and can only be suc-
cessful, because parts of the approach have already been proven in practice.

1. The modular definition of languages has already been given for UML2.0,
although not completely related to the semantics.

2. The use of a common base for integrating several languages has been shown
in the joint simulation of SDL, VHDL and MSC specifications with the
Humboldt-University simulation environment.

3. The generation of a complete tool set (parser, semantics checker and simu-
lation) from a formal language description has already been shown within
the SDL-2000 formal semantics project.

8

4 First Steps

In this section we want to explain the first achievements we have taken in the
SMILE project. We will first describe our basic FORM representation which can
be used on all metamodelling levels. Afterwards, we describe how to transform
a grammar-based language description into a metamodel based one.

4.1 The FORM Representation

As our aim is to represent models the same way as metamodels, we describe
in this section a basic representation for models called FORM, which can be
used independently of the level of the models. See also [5] for a more in-depth
introduction. Our proposed representation is based on the following observation:
Every part of a level in the metamodel structure is an instance of something at
the level above.

The metamodelling environment can be restricted to objects; in a sense ”ob-
ject” is the lowest common denominator of all levels. Since our metamodelling
approach is object-oriented, we need to represent the following information:

– Objects.
– Slots owned by objects.
– Slot values and their type.
– Links between objects.
– Every object knows its class.
– Every slot knows its attribute.
– Every link knows its association.

2

*
Slot

Link

1

Form

name:String

instantiateAs:InstanceKind

{ordered}

Instance

instanceOf

1

*

1

Value

interpretation1

Symbol

BasicValue

value:String

«enumeration»

InstanceKind

form

slot

link

basicvalue

BasicType

membercheck(Value):Boolean

Fig. 1. The FORM definition

9

All these parts are covered in FORM as can be seen in Fig.1, where we define
physical building blocks that can be put together to form complex structures,
much like how atoms can be put together to form molecules.

The metaphor above used the term physical which in this context can be
seen as the same as concrete, one can choose to see the computer objects as
existing physical objects [4]. ”Abstract information” must be coded in concrete
representation; the coded information is forming a pattern (structure) that might
be interpreted by humans or machines. A computer can interpret in the sense
that it can transform and operate on the structure.

It is of course problematic to talk about abstract representations and even
to handle them. Therefore we also need a concrete (physical) representation.

An instance of class Symbol (typically the name of what it represents), will
have a link to the Form-instance it symbolizes. The mentioned Form-instance,
together with connected slots and possibly some other linked Form-instance, can
be seen as an interpretation of the symbol. Instead of letting an instance be
linked directly to what it is an instance of, we have an interface of Symbols
between levels. This allows us to handle levels separately from their adjoining
levels and only bringing them together when necessary. It is easy to relate the
model to a metalevel border: the interpretation of a symbol is on the upper
side of the border and the ”instances of the symbol” are on the lower side of
the border. The symbols of the instantiable forms of one metalevel constitute
the interface towards the level below. This way levels can be seen as separate
components.

Connection (Reference)

Value instance

Link instance

Slot instance

Form instance

Symbol instance

Concrete Visual

Representation
Element

Fig. 2. The visual symbols of the FORM-notation.

In order to be able to visualize the (abstract) FORM representation, we need
some (physical) notation. Of course it would be possible to use some kind of UML
notation, because UML includes all aspects that are necessary here. However, as
our notation is used for representing models and metamodels, it usually leads to

10

confusion if we use a known notation. Therefore we use the symbols shown in
Fig. 2 for visualizing the elements of our abstract representation . We visualize
a reference as a line connecting the two involved entities. The λ inside Symbol
instance is to be replaced with the actual name of the Symbol; the λ inside Value
instance is to be replaced with the value (e.g. 5).

In Fig. 3 our mechanism is used with a small example. It can be clearly seen
that our representation is capable of representing all levels in a uniform way
using only the few notational elements given in Fig. 2.

”Bob”

Personname CarOwing ownerownsString

Class Stringname

”Person”

CarPerson
Owing

ownsowner

Bob:Person :Car

name:String

Property

(a) (b)

Fig. 3. An instance of FORM (left) representing a part of the UML model (right).

Please note the special handling of primitive data. A primitive type is special
since it is implemented or built-in by the underlying infrastructure. Its semantics
cannot be found on a level in the metamodel structure - it has no ”relevant
substructure (i.e. it has no parts)” as they state in [1]. Assume that 5 is used on
level M1; 5 could then be seen as an instance of the type Integer which resides
on level M2; Integer could then be seen as an instance of PrimitiveType which
resides on level M3, and finally PrimitiveType could be seen as an instance of
Class.

However, a basic value has already a defined semantics, which can be related
to the definition of its (proto)type on the level above. The same is not true for
the other instances, they all have an explicit structure as their semantics.

In our approach, however, we do not have the possibility to give special se-
mantics to names - all semantics should be given explicitly or be built-in. There-
fore we introduce a special kind of Value for the basic values called BasicValue.
We also introduce a special kind of Form for the basic types called BasicType.
Both basic types and basic values are not characterized by their internal struc-
ture, but they carry their semantics already with them. In a way, they have
an ”external structure”3. Handling of external structure is only possible to be
built-in, which is what we do here.

3 As the research on abstract data types has shown it is possible to turn every exter-
nal structure into an internal structure. However, as was also shown by the ADT
community, this is in general very error-prone and should be avoided if there are
other possibilities.

11

The difference to UML is that we are giving the semantics bottom-up instead
of top-down as within UML. In other words, it is completely arbitrary which class
the basic types are collected in because we do not attach meaning to names.

4.2 Transformation of Grammars to Metamodels

Scheidgen [6] has defined a two-phased methodology to transform a grammar
which defines a language into a corresponding metamodel. The first phase is
the automatic transformation of the grammar into a primitive metamodel. The
first step is to introduce for each symbol in the grammar a class in the meta-
model which carries the name of the symbol. Afterwards the grammar rules are
modelled either by associations between these classes or in case of alternatives
by generalization relationships between the classes. Multiplicities and repetition
expressions in the grammar are reflected accordingly by multiplicies at the as-
sociation ends. Additional rules for the introduction and naming of metamodel
elements may have to be applied in case of sub-expressions and complex gram-
mar rules. Altogether the complete transformation set comprises ten rules and
has been implemented by a term processor. The tool operates over the syntax
tree of the grammar of the original language and produces the metamodel as an
XMI-based document.

Due to the derivation of the primitive metamodel from the grammar it still
shows characteristics of the grammar which unfortunately limit its applicabil-
ity. Especially the low degree of reuse of modelling elements and the shallow
inheritance hierarchy are unusual for a metamodel of good quality. Therefore in
the second phase of the methodology the primitive metamodel is transformed
semiautomatically to increase its quality. The main approach is the application
of abstraction mechanisms to organize the set of metamodel elements into larger
inheritance hierachies. This takes into account semantical information about the
language besides the syntactical information and results in additional abstract
metamodel elements. Subsequently, the associations between the classes have to
be adapted accordingly and OCL rules are added to ensure consistency. Hierachi-
cal packages are used to keep the metamodel manageable and comprehensible for
the human user. Even though the second phase of the transformation requires
a large amount of human input, tools are provided to support the transforma-
tion. The rules are implemented by Java applets which operate over a repository
containing the metamodel.

The feasibility of his methodology has been proven by Scheidgen by the
transformation of the SDL grammar into an SDL metamodel.

5 Combination of Modelling Languages

In [3] three general types of model combination and combination of modelling
techniques within the software engineering process have been identified:

– Process Driven Combination: Models of one design phase or activity serve as
starting point for the next phase or activity and different modelling languages

12

are used for the activities or phases. The models are ordered chronologically,
i.e. they are not used at the same time.

– Abstraction Driven Combination: The single models describe the system
within the same design phase but using different abstractions (views). These
views usually deploy different languages. An overall model can be obtained
by a superimposition of the sub-models.

– Structural or Architectural Combination: The single models describe differ-
ent components or sub-systems of the overall system. Different domain or
task specific languages may be applied for the sub-models. The overall model
can be obtained by a composition/aggregation of the sub-models.

The first two approaches serve a smooth transition between the different phases
in the software design and a dedicated capture of design decisions. However, if
code generation or prototype production is the goal the emphasis lies on struc-
tural combination and abstraction driven combination. The three forms of model
combination do result in different requirements on the languages and may re-
sult in varying technical solutions. The structural combination e.g. requires the
modelling languages to be able to:

– specify an overall model as a composition of interconnected subsystem and
component models,

– specify interfaces between the components and subsystems, and
– specify the components and subsystems as open models (i.e. they must be

able to communicate with their environment).

Due to the independence of the single submodels structural combination enables
the autonomous verification, validation and evolution of the submodels. How-
ever, the interfaces specified for the interconnection must not be changed. The
classical approaches to support the combination of languages are the integration
of the languages into a single languages or the translation between the languages.
However, both ways have shown their limitations for the practical application.
Therefore we propose to base the combination on a set of well defined concepts,
that form the concept space or metamodel for the method. Mappings are de-
fined, that relate a concept or a set of concepts to elements of a concrete target
language (e.g. UML or SDL). Adhering to this idea, the combination comprises
three parts, which are

– the metamodel, that defines a language- and tool-independent core termi-
nology for the specification and design of distributed applications,

– a set of rules relating the core concept space with the concept spaces of the
actual languages, and

– a single set or multiple sets of mapping rules, which enable a smooth tran-
sition from the design to the implementation by concrete tools.

Starting from the informal definition of the common concept space, we apply
our SMILE-framework to specify a metamodel that captures the concepts of our
concept space. Of course, in order to determine the set of concepts that forms
the common concept core, it has to be decided which form of model combination

13

shall be supported. There are three ways to connect the common concept space
to the metamodels of the languages which shall be combined:

– use of the common concept space as foundation for the single metamodels,
– definition of the common concept space as specialization of the metamodels,
– introduction of additional references to the common core in the metamodels.

The first case provides us a tight integration of the original languages, however, it
does also require fundamental modifications of the original metamodels. For that
reason mostly the two other cases will be applied. They do introduce reference
points into the languages which are directly based on the set of concepts common
to both languages and specify the interface between the subsystems.

6 Conclusions and Further Work

This article shows the feasability of an engineering approach to language de-
velopment. In the same way as software, also languages can be developed in
a stepwise and iterative process, where the current state can be checked using
appropriate tools. Most of the tools necessary for this are already in place for
grammar-based language definitions.

We propose to transfer this expertise to the metamodel world and to keep
the same level of executability and tool support also here. In addition, we get
the much better modelling facilities of the metamodel approach. The article has
shown that already a considerable amount of knowledge is present to make MDA
work not only on program level but also on language level. However, several parts
are still missing. The SMILE project aims at tackling exactly these missing parts
and in collecting the existing bits and pieces.

The work within SMILE is still at the beginning. Although we have a clear
idea on what to do, we still have to make it happen. The parts already done
encourage us to proceed with this approach.

References

1. OMG Editor. OMG Unified Modeling Language Specification, Version 2.0. OMG
Document. OMG, http://www.omg.org, 2003.

2. OMG Editor. Revised Submission to OMG RFP ad/2003-04-07: Meta Object Facil-
ity (MOF) 2.0 Core Proposal. OMG Document. OMG, http://www.omg.org, April
2003.

3. Eckhardt Holz. Kombination von Modellierungstechniken für den Softwareentwurf.
Der Andere Verlag, 2004.

4. Ole Lehrmann Madsen, Birger Møller Pedersen, and Kristen Nyg̊ard. Object-
Oriented Programming in the Beta Programming Language. ACM Press, Addison-
Wesley, 1993.

5. J.P. Nytun and A. Prinz. Representation of levels and instantiation in a metamod-
elling environment. In 2nd Nordic Workshop on the Unified Modeling Language
(NWUML 2004), 2004.

6. Markus Scheidgen. Metamodelle für Sprachen mit formaler Syntaxdefinition am
Beispiel von SDL-2000. Humboldt Universität zu Berlin, 2004.

