
Using UML Models for the Performance Analysis
of Network Systems

Nico de Wet and Pieter Kritzinger
Department of Computer Science

University of Cape Town
Private Bag Rondebosch 7701

South Africa
Tel: +27 21 650 2663
Fax: +27 21 689 9465

{ndewet,psk@cs.uct.ac.za}

Abstract— The automated functional and performance analysis
of communication systems specified with some Formal Descrip-
tion Technique has long been the goal of telecommunication
engineers. In the past SDL and Petri nets have been the most
popular FDTs for the purpose. With the growth in popularity
of UML the most obvious question to ask is whether one can
translate one or more UML diagrams describing a system to
a performance model. Until the advent of UML 2.0, that has
been an impossible task since the semantics were not clear. Even
though the UML semantics is still not clear for the purpose, with
UML 2.0 now released and using ITU recommendation Z.109, we
describe in this paper a methodology and tool called proSPEX
(protocol Software Performance Engineering using XMI), for
the design and performance analysis of communication protocols
specified with UML.

I. I NTRODUCTION

While UML has become ade facto modelling standard,
it is not often employed in the protocol engineering process
as a specification language. This is primarily because it is a
general-purpose modelling language without formal semantics.

With the emerging UML 2.0 standard the Object Manage-
ment Group (OMG) appears to have addressed the shortcom-
ings of UML in the real-time modelling and protocol engineer-
ing domains. Notably the architectural modelling capabilities
of UML 2.0 has been drawn from both the ROOM modelling
language[SGW94] and SDL[Hog89]. For instance, the UML
2.0 architecture diagrams show the hierarchical subdivision
of active classesand are composed ofparts (which are also
active classes),provided and required interfaces, ports and
connectors.

While UML 2.0 does provided enhanced architectural mod-
elling capabilities it is not a formal language and as such does
not posses formal semantics or a syntax. Tool vendors have
worked around the problem by applying the ITU Recommen-
dation Z.109 [MP00] ”SDL Combined with UML” to UML
2.0. This recommendation is for a UML profile meaning that it
specializes UML using stereotypes, tagged values, constraints
and notational elements. By applying the Z.109 profile to UML
2.0 the abstractions, tightened semantics and syntax that are
found in SDL can be used when specifying the behaviour of
active classes using state machines.

When building performance models using UML 2.0 en-
hanced with the Z.109 profile, previous approaches to perfor-
mance analysis [BMSK96][MTMC99] that incorporate tempo-
ral aspects into SDL specifications, can be applied. UML 2.0
offers several diagram types with different system views which
may be semantically equivalent, as is the case with sequence
and state machine diagrams. In the proSPEX methodology, we
use a minimal subset of UML 2.0 diagrams to specify commu-
nication protocols as well as the environmental constraints and
workload associated with a particular system scenario. These
diagrams are then translated to a process-based discrete event
simulation model.

The modelling process itself should be supported by the
use of design patterns for protocol system architecture[PT00].
The model is created in a commercial model editing tool,
Telelogic Tau G2, and verified using this tool. Following
the Tau-based verification a collaboration diagram depicting a
simulation scenario is created by the user. This diagram serves
as a basis for defining system workloads and for specifying
non-functional time dependent aspects. The proSPEX tool then
imports the model using its filters to Tau G2. It then executes
the model and gives performance measures to the user.

In Sect. II we discuss the validation, verification and
performance evaluation of communication software. Model-
driven development using UML 2.0 and SDL is outlined in
Sect. III. We then discuss communication system performance
modelling with SDL in Sect. IV and with UML 2.0 in Sect.
V. The proSPEX methodology, architecture and semantic time
model are discussed in Sect. VI to Sect. VIII respectively. A
performance analysis case-study is discussed in Sect. IX while
concluding remarks are made in Sect. X.

II. VALIDATION ,VERIFICATION AND PERFORMANCE

Communication software is particularly susceptible to both
errors and performance problems due to the complexity of
interactions in application and network layer protocols. These
errors and performance problems tend to arise primarily due to
the temporal dependencies among the participating processes.
It is generally accepted that communication software should
be specified using formal languages[SK00], [Hol92], [Ste98],



[ea99], thereby allowing high level design verification. Ex-
amples of such languages are the Process Meta Language
(PROMELA, the system description language of SPIN[Hol91],
[SK00]), the Specification and Description Language (SDL)
and Estelle.

UML could also be used as a specification language, how-
ever it is a general-purpose language without formal semantics.
As a work-around a common approach is to map a subset of
UML diagrams to existing formal methods[BDM02], [MC01],
[LQV01] in order to allow automated analysis. An alternative
approach is to merge UML with a formal language, as has been
done in the International Telecommunication Union Recom-
mendation Z.109 titled ”SDL Combined with UML”[Bjo02].
Z.109 is a UML profile meaning that it specializes UML using
stereotypes, tagged values, constraints and notational elements.

Having established that a communication component is error
free, the next step in the construction of reliable, quality
software is performance analysis. The formally specified net-
work and component interaction protocols would be analyzed
by either analytic evaluation, experimentation or simulation.
In proSPEX, the prototype tool supporting our methodology,
we use process-based discrete event simulation and statistical
performance evaluation. Simulation has the advantage of being
able to evaluate protocol performance according to given
metrics as well as being useful in aiding in the understanding
of protocol interactions[MB02].

III. M ODEL-DRIVEN DEVELOPMENT

Model-driven development1 is an approach to software
development in which the resultant implementation is automat-
ically generated from models. In order to realize model-driven
development one needs graphical programming abilities which
is the ability to program directly in the modelling language.
SDL has been used as a model-driven development language
for some time in the telecommunication industry. Part of the
attraction of SDL stems from the availability of specialized
abstractions, such as signalling, that are useful in model-driven
communication software development. The merger of UML
2.02 and SDL, via the ITU-T Z.109 Recommendation[Bjo02],
is a powerful realization of model-driven development geared
towards communication software development. The Telelogic
Tau G2 tool uses such a merger resulting in the non-standard
TelelogicUML Syntaxthat largely resembles SDL.

Using UML 2.0 as a language for model-driven develop-
ment of communication software is appealing due to it being
an evolution of the de facto UML 1.x standard. This evolution
has been driven by the need to address deficiencies of UML 1.x
noted since UML was first proposed in 1997. These deficien-
cies include a lack of formal semantics, inadequate semantics
definition[Sel03] and excessive size. Of the enhancements
offered by UML 2.0, the architectural modelling capabilities
are of particular importance when conducting model-driven
development of communication components. The architectural

1”The model is the implementation”[Sel03]
2Adopted as an official OMG standard specification in June 12, 2003

modelling capabilities of UML 2.0 are based on mature lan-
guages such as SDL and ROOM (Real-Time Object-Oriented
Modelling).

Model-driven development of communication software us-
ing UML 2.0 merged with SDL is appealing due to SDL
being a formal language with useful protocol engineering
abstractions. The appeal also derives from the fact that the
language and its higher level abstractions aretarget-language-
independent[Bjo02]. This means that following verification
and validation of a component programming language code
such as C, C++ or Java could be generated. The non-standard
Telelogic TauUML Syntax is target language independent,
meaning that equivalent implementations and simulation mod-
els can be generated.

IV. PERFORMANCEMODELLING WITH SDL

In this work we use UML 2.0 (extended with the ITU
Z.109 profile) in which SDL state machines are used for
model-driven behavioral specification. As such we review
performance modelling issues and approaches to resolving
these issues in the context of SDL.

It has been acknowledged that performance-enhanced ex-
tensions of standard SDL are necessary when modelling
non-functional duration constraints. In various approaches to
performance analysis with SDL, the semantic time model
of SDL is enhanced by providing means of modelling non-
functional time dependant aspects. Such semantic time models
are realised by time related features that are needed for
functional design and also by time related features that are
needed for non-functional aspects and analysis.

Time related features required for functional design include
clocks, timeouts and time dependant enabling conditions. Time
related features required for non-functional design include tim-
ing restrictions due to knowledge of the execution environment
and modelling the execution times of tasks.

The means of modelling non-functional time dependant
aspects are missing from SDL [Gra02][Spi97], as is noted by
Graf [Gra02]:

Non-functional primitives express timing features
orthogonal to the functional behaviour, and they
consist in constraints on the (relative) occurence
time of events, and are completely lacking in the
standard.

It is this lack in the standard which is the subject that is
addressed by the various approaches [BMSK96][Rou][Ste98]
[MDMC96][MHSZ96][Spi97] to performance analysis using
SDL. Each approach provides a means of modelling duration
contraints that allow for the expression of timing charac-
teristics of the environment and underlying execution sys-
tem [Gra02]. Non-functional time related aspects include3

[Gra02]:

• Communication delays: all communication in SDL oc-
curs via channels which may have an associated delay.

3We borrow from work [Gra02] by Susanne Graf in the list of non-
functional time related aspects that are discussed.



Channel attributes may include a loss rate and whether the
delay is load dependent or not. A communication channel
with parallelism, such as the Internet, may be regarded
as load independent, while a sequential medium would
be load dependent.

• Processing times: the processing of a signal can be
divided into queueing andtreatment[Gra02] phases. The
treatment time consists of pure execution and blocking
time (due to scheduling). The overall processing time can
be modelled as an expression representing a time interval.
With SDL an important question that arises is for which
sort of behaviours duration constraints can be specified.
For example are durations constraints associated with
SDL behavioral primitives (i.e. tasks, output, input etc.),
SDL behaviour sequences (i.e. transitions or procedures),
or SDL processes.

• Execution modes: with execution modes we consider
time passage in parts of the system with no time con-
straints expressed. With standard SDL semantics time
passage is interpreted as passing arbitrarily in such parts.
A designer could specify a different execution mode,
for example all non time constrained actions could be
immediate.

• Time constraints on the external environment: the tim-
ing constraints of signals arriving from the environment
must be expressible. Such characteristics include response
time, inter arrival times and jitter. The environment can
be modelled by processes in which the above mentioned
signal characteristics can be expressed using time guards.

• Scheduling: in order to represent scheduling algorithms
in SDL information regarding the preemtability of atomic
steps, or sequences of atomic steps, must be provided.
Questions of how or if scheduling information should be
represented in SDL is answered to varying degrees by
the different approaches.

• Local time: the ability to express local clock timeand
global system clock time (the external reference time, or
now) is important in model-checking in order to detect
unforseen errors such as livelock and deadlock. Moreover,
the relationship between local time and the reference time
must be clearly defined.

Non-functional duration constraints need to be represented
to allow for automated performance analysis. The resultant
issue that we consider is whether the standard SDL syntax
is amended in such a representation when using a particular
approach to performance analysis.

The importance of this consideration is that if one wants a
tool based on an approach to be useful to the largest possible
audience one would want to take existing SDL specifications
and analyse them using the toolwithout having to change the
given specification. In the context of this issue we examine
the means of attributing performance analysis directives (e.g.
delay and scheduling directives) to communication protocol
models.

We review the SPECS, ObjectGEODE and QUEST ap-
proaches to performance analysis using SDL. In our review

we give particular consideration to the means of representing
non-functional duration constraints and whether existing SDL
specifications can be analysed without change.

A. SPECS: SDL Performance Evaluation of Concurrent Sys-
tems

With the SPECS tool [BMSK96][BMSK95] a protocol
system specified using standard SDL is imported and then
attributed with environmental constraints. Relative execution
speed values are assigned to each block while the processes
within a block are given weights. The assignment of these
values, which is done using a GUI dialog box, is equivalent to
annotating the model using comment symbols. Hence existing
SDL/PR specifications can be analysed since the SDL standard
has not been molested.

The units of the execution speeds areactions per time unit
meaning that the number of actions each process can execute
(the processaction quota) once scheduled is determined by
its weight. In this way time, which is maintained by a global
simulation clock, is advanced either when process instances
have exhausted their action quotas or process instances are
all waiting for input. At each advancement of the simulation
clock, timers, which are maintained separately by each process
instance, are checked for expiration.

With regards to the semantics of time when considering
signal transmission, SPECS enhances the standard semantics
of SDL by assuming that signal transfers over channels
experience a randomly distributed delay and may be lost with
a certain probability.

B. ObjectGEODE: The SDL Simulator

With the ObjectGEODE SDL Simulator [Rou] extensions
to the SDL language are used to model non-functional time
dependant aspects. These extensions are however used ex-
clusively in SDL comment symbols and hence the annotated
models still conform to the Z.100 standard.

Processing delay timing constraints (or delays) are asso-
ciated with individual actions (and not transitions).NODE,
PRIORITYandDELAYdirective are used with ObjectGEODE.
The PRIORITY directive is used as an alternative to the
default scheduling algorithm which is a random uniform
choice among the fireable transitions of all process instances
of a node. With the DELAY directive the execution duration of
SDL actions can be specified using some random distribution.

C. QUEST: The Queueing SDL Tool

With the QUEST [MDMC96] approach to the specification
of non-functional properties, the SDL language is extended,
resulting in the QSDL (Queueing SDL) language. QSDL
has a QSDL/GR notation which has equivalent diagrams
for each SDL/GR symbol. An SDL process is amachine
(queueing station) in QSDL and the parameters that can be
associated with amachineincludes a name, server number,
service discipline (e.g. FCFS, RANDOM), a set of offered
services and service-specific speed values. Each QSDLrequest
instruction is time consuming and requires a service amount



attribute and an optional priority. In this way time durations
and the use of resources can be associated withcertainactions.

For workload characterisation, a number of random distri-
bution functions are provided. These functions would be used
in load generators which are implemented as QSDL processes.

V. UML 2.0 AND COMMUNICATION SOFTWARE

PERFORMANCEMODELLING

With UML the original intention was a language for
specifying, visualizing, constructing, and documenting the
artifacts of software systems [BRJ98]. UML has over nine
diagram types, some of which are semantically equivalent,
for the mentioned purposes. As we have mentioned, UML
is not often employed in the protocol engineering process
primarily because it is a general-purpose modelling language
without formal semantics. With UML 2.0, the Object Manage-
ment Group (OMG) intended to address various shortcomings
[Kob02][Dor02] [Mil02] in the standard that have been noted
since its inception.

Although UML 2.0 is not a formal language, it is an
attractive language in the protocol engineering field due to
enhanced architectural modelling capabilities which have been
drawn from both the ROOM modelling language[SGW94] and
SDL[Hog89]. In addition, by applying the ITU Recommenda-
tion Z.109 [MP00] ”SDL Combined with UML” to UML 2.0,
the abstractions, tightened semantics and syntax that are found
in SDL state machines become available.

As we have noted, when building performance models
using UML 2.0 enhanced with the Z.109 profile, previous
approaches to performance analysis [BMSK96][MTMC99]
that incorporate temporal aspects into SDL specifications, can
be applied. These previous approaches dealt with SDL and
not UML 2.0 and so Use Case, Collaboration, Sequence,
Activity, Deployment (and other diagrams) were not available.
Questions that may therefore arise include which UML 2.0
diagrams should be used when modelling non-functional du-
ration constraints and scenario-based workloads? In addition
the UML Profile for Schedulability, Performance and Time
[Gro02] (UML-RT profile) should be considered.

With proSPEX we have taken the approach of using the
minimal subset of diagrams when specifying communication
protocols and subsequently annotating the specifications with
non-functional environmental constraints. In this approach
state machine diagrams, architectural diagrams and collabo-
rations diagrams are used as the basis of an executable perfor-
mance model. We have chosen not to make any syntax changes
in the state machines (as is done in [BMSK96][Rou]) and have
therefore used an approach in which all non-functional con-
straints are specified using collaboration diagrams annotated
with performance constraints. Our methodology, tool construc-
tion approach and consideration of the UML-RT profile as
discussed in subsequent sections.

VI. T HE PROSPEX METHODOLOGY

The proposed methodology for the modelling, verification
and performance evaluation of communication software is

presented in Fig. 1. The steps in our methodology are outlined
below.

Fig. 1. The proposed methodology supported by the simulation-based
proSPEX performance analysis tool

Requirements Definition:The first step is to establish the
requirements of the communication component. In the case
of a transport layer protocol a requirement may be to use
the available bandwidth as efficiently as possible. Following
requirement definition we identify4 or design suitable network
and application layer inter-component protocols. UML 2.0
use case and sequence diagrams could be used to aid
understanding but these are not used when generating the
simulation model, as can be seen in Fig. 1.

Architecture Specification:The next step is to use a com-
bination of UML 2.0 class and architecture diagrams (with
ports, connectors and interfaces) to design the protocol ar-
chitecture. The use of design patterns for protocol system
architecture[PT00] is recommended at this stage. The focus
of this stage is to identify the active classes (classes with their
own thread of control) and their interfaces.

Interface-based design has the benefit of both reduced
design complexity and giving distributed teams the ability to
work concurrently while using the interface as a contract. In
UML 2.0 an interface is a classifier representing a declaration
of a set of public features and obligations[Gro03]. Interfaces
are not instantiable, instead they are eitherprovidedor required
by a classifier such as a class. When a class provides an
interface it carries out its obligations to clients of instances of
the class. When a class requires an interface it means that it
needs the services specified in the interface in order to perform
its function and fulfill its own obligations to its clients. The
notation introduced for a provided interface is a full-circle
lollipop whilst the notation introduced for a required interface
is a semi-circle lollipop.

Fig. 2 shows the architecture diagram of an active class
with two parts, namely any number of Sessions and a single
RoutingPeerProxy. The parts are linked withconnectorsthat
are attached toports. Note that notationally ports are the

4Requests for Comments (RFC) documents could be used here.



squares to which the required interfaces, provided interfaces
and connectors are attached. Eachport serves the duel
purpose of being used to group an active class’s related
interfaces and also acting as interaction (or connecting) points
through which the services of a class can be accessed. In the
architectural view of an active class we want to be able to
distinguish between behaviour that is delegated to the class
itself and behaviour that is delegated to its parts. Connectors
terminating in a behaviour port mean that the signals sent to
the port are handled by the containing class. Notationally a
behaviour port is represented by a state symbol attached to a
square port symbol, as can be seen in Fig. 2.

Fig. 2. Architecture specification with UML 2.0

Behaviour Specification: Following the architectural
specification we specify the detailed behavior of active
classes by implementing state machines using statechart
diagrams. As discussed in section III, we use specialized
communication abstractions derived from SDL in this
model-driven development process. Fig. 3 shows a part of
a UML 2.0 statechart diagram, note that the syntax used
is the Telelogic TauUML Syntaxderived from SDL. Once
this stage is complete the software is verified using facilities
provided by the model editing tool, in our case Telelogic Tau
G2.

Fig. 3. Behaviour specification with UML 2.0

Simulation Scenario Specification:Once the software has
been verified the performance modelling phase commences.
With proSPEX non-functional timing annotations are embed-
ded in UML 2.0 comment symbols, thereby allowing for
the use of commercial modelling tools for specification and
validation.

The performance modelling phase starts with the modelling
of the environment of the communication component. That is,
we create client and server (or peer) active classes and their
associated state machines. A collaboration diagram (see Fig.
4) is then drawn up illustrating a simulation scenario which in
combination with the statechart diagrams of the client(s) and
server(s) serve as the workload.

This collaboration diagram would indicate the number of
clients and servers and also network link characteristics (loss
probability, bandwidth and delay distribution). Processing de-
lay timing constraints (or delays) are associated with active
classes and may be deterministic of randomly distributed. The
network link and processing delay parameters are specified
using comment symbols.

Once the scenario has been completed the proSPEX tool
user imports the model from which a semantically equivalent
simulation model is generated.

Results: The events and corresponding trace messages that
the simulator is able to generate dictate the set of performance
statistics that can be calculated. The simulation model gener-
ated by proSPEX is able to generate the following types of
trace messages5:

1) Message M sent via Connector C from process P1 to
process P2 at time t

2) Message M from process P1 read by process P2

5For brevity we use the termprocessinstead ofactive class



Fig. 4. Simulation scenario and workload specification

at time t
3) Message M from process P1 arrives in queue of process

P2 at time t
4) Process P created at time t
5) Process P destroyed at time t
6) Overflow: message M from P1 to P2 discarded

at time t
7) Process P has transition from state S1 to state S2

at time t
8) Message M from process P1 discarded by process P

at time t
9) Timer T set to duration d in process P at time t

10) Timer T reset in process P at time t
11) Timeout: Timer T in process P at time t

The performance measures that can be calculated from
analysis of simulation traces containing the above mentioned
messages includes:

1) Mean queue waiting time
2) Connector throughput
3) Mean and maximum queue length
4) Detection of queue overflows
5) Throughput of a state
6) Discarded signals
7) List Unreachable states
8) Average time spent blocked in a state for a signal
9) The lifetime of a process

10) Timeout reset and expiration ratios

Naturally any analysis results would refer to the steady-
state behaviour of the system and would be computed with
confidence intervals. These measures would then prompt the
user to either change the simulation parameters or the model
itself.

VII. T HE PROSPEX TOOL ARCHITECTURE

In this section we give a general overview of the proSPEX
tool architecture and certain technical issues encountered when
translating a UML 2.0 model to an executable simulation
representation. We also motivate our design decisions and
report on the manner in which we overcame challenges.

With proSPEX our intention was to create a model-
processing tool and not a model editor since developing an
editor would deviate from the primary objective of the project.
Telelogic Tau G2 offered an XML-based model file format
which was sufficient for our purposes, although the standard
XML Metadata Interchange (XMI) 2.0 file format would have
been preferable, since this would theoretically allow any future
UML 2.0 editor to be used. We had to filter the Telelogic Tau
XML and place the filtered aspects into data structures that can
be used for simulation code generation. With the Tau XML
being extremely verbose this was not a trivial task.

We were faced with the option of either developing a
process-based discrete event simulator from the ground up
or to use existing simulation packages. A review of the
available simulation packages showed that Simmcast[MB02],
an object-oriented framework for network simulation, would
be ideal. Simmcast is specifically intended to be used in
research environments with limited resources, as the excerpt
from [MB02] shows:

...the complete development of a dedicated simu-
lation tool from scratch is not practical, since the
amount of resources dispensed in such a project
would detract the researcher’s focus from the project.

Simmcast offers extensible building blocks (such as nodes,
paths, network and packet) that are combined to describe the
simulated network environment. Nodes, each of which are
uniquely identified by an integer and contains at least one
thread of execution, are the fundamental interacting entities
and are connected via paths. The user extends the Node
class, via inheritance and places protocol logic and simulation
action primitives (such as send, receive, setTimer, sleep) in the
extended class.

Despite offering a framework with extendible building
blocks we found the need to extend the list of simulation action
primitives in order to accommodate required actions such as
process creation and termination. Simmcast does not offer such
primitives since a Simmcast simulation experiment is defined
using a simulation description file that specifies the network
topology and startup parameters. We extended Simmcast to
generate simulation traces with the messages mentioned in
Sec.VI.

An additional technical issue that had to be overcome in the
translation process involved addressing. During the translation
from an UML 2.0 model to a (modified) Simmcast simulation



model we had to map concepts such asPid (process identifier)
expressions6, which can either beself, parent, offspring or
sender, to Simmcast simulation code.

In the Simmcast code generation process we found the need
to use templates, as can be seen in Fig. 5. The templates are fed
into a text templating engine in order to insert dynamic content
into prewritten Simmcast source code. Text templating engines
are essential tools in code generation as they solve the problem
of inserting dynamic content into prewritten text. Our chosen
text templating engine, the Velocity Template Engine[Pro04]),
is used for Java implementation code generation in the popular
Poseidon UML tool created by Gentleware AG.

Fig. 5. The proSPEX architecture

VIII. T HE PROSPEX SEMANTIC TIME MODEL

In Sect. IV we noted that performance-enhanced exten-
sions of standard SDL are necessary when modelling non-
functional duration constraints. Here we explicitly mention

6These expressions are derived from SDL and incorporated into UML 2.0
via the ITU-T Z.109 Recommendation

how these non-functional time related aspects are represented
in proSPEX.

• Communication delay: with proSPEX communication
delay is associated with packets that traverse network
links. Such links have an associated propagation delay
(modelled with a random distribution), bandwidth and
loss probability. When a packet (or signal) is sent across
a network link, delay is applied in two stages before it
reaches the receiving queue of the target process. In the
first stage the packet is delayed by asending time, which
is calculated using the bandwidth and a packet byte size
attribute. In the second stage apropagation delayis ap-
plied and loss probability is applied, with the propagation
delay being drawn from a random distribution.

• Processing times: with proSPEX we have used the facil-
ities of the underlying simulation framework and hence
a sendingand receiving processing delay is associated
with active classes. Active classes that have such delays
specified have their execution blocked by the specified
delay values whenever a signal is sent and received. In
other words the sending and receiving delay associated
with an active class is effectively mapped to each input
and output operation. Such delay is deterministic by
default, although the use of random delay distributions
is possible.
Future extensions to proSPEX will be to allow for pro-
cessing delay to be associated with individual actions
and transitions, as is done in the objectGEODE [Rou]
approach, using annotated comment symbols.

• Execution modes: with execution modes we consider
time passage in parts of the system with no time con-
straints expressed. With proSPEX only input and output
actions are time constrained, and hence all non time
constrained actions are immediate.

• Time constraints on the external environment: with
proSPEX the environment is modelled by processes in
which signal characteristics can be expressed using time
guards.

• Scheduling: scheduling information is not represented
with proSPEX. Process scheduling is determined by the
order of the individual process event sequences.

IX. CASE STUDY

In order to illustrate the application and utility of our
methodology we studied the performance of the Efficient Short
Remote Operations (ESRO) transport protocol in the context
of the network scenario illustrated in Figure 6. The scenario
is one in which ESRO is used in acredit card authorization
application in which a number of clients invoke operations
on a single server acting as the ESRO server. In this scenario
multiple mobile stations are linked (via a GPRS network) with
an e-commerce server using ESRO as the transport protocol.

The service ESRO offers is a reliable connectionless trans-
port for wireless links when efficiency is of concern. The
service supports applications based on a remote operations
model that is largely the same as the Remote Procedure Call



Switch Server
Mean Queue Length 1.00 1.33

95% Confidence Interval (1.00 - 1.00) (0.79 - 1.88)
Max Queue Length 1.00 7.00

95% Confidence Interval (1.00 - 1.00) (6.34 - 7.66)

TABLE I

ESROSERVER BUFFER SIZE

(RPC) model [Mic88]. Service data units (SDU) are segmented
into protocol data units (PDU), each of which are encapsulated
into a UDP datagram. The simplicity of the protocol lies in the
retransmission strategy, which is that if an SDU is segmented,
the retransmission strategy is not applied to individual lost
segments, the whole SDU is retransmitted.

Fig. 6. Network used in the proSPEX case study

In particular, for the system illustrated in the figure we
asked what the expected buffer size at the server and switching
nodes, respectively, will be given certain link and node param-
eter value scenarios. We determined the expected buffer size
from the maximum queue length determined by simulating the
specification. The results are illustrated in table I.

With an estimated maximum queue length of 7 packets at
the server and a maximum PDU length of 1500 bytes used
in the scenario, the largest buffer size required in the ESRO
server would be about 10 KB.

X. CONCLUSION

UML 2.0, a major revision of thede facto UML mod-
elling standard, has emerged as a model-driven development
language well suited to communication system development.
By applying the ITU Recommendation Z.109 [MP00] ”SDL
Combined with UML” to UML 2.0, the abstractions, tightened
semantics and syntax that are found in SDL state machines be-
come available. With this enhancement previous approaches to
performance analysis [BMSK96][MTMC99] that incorporate
temporal aspects into SDL specifications, can be applied.

In this work we have developed a methodology for the
design and performance analysis of communication software.
This methodology is supported by the proSPEX performance
analysis tool. One of the questions we hoped to answer was

whether one can translate from one or more UML diagrams
describing a system to a performance model.

In developing our methodology we found that UML 2.0
class, architecture and state chart diagrams were necessary to
define the architecture and behaviour of communication soft-
ware. We investigated means of representing non-functional
duration constraints and the associated semantic time models
in the case of SDL. As a result of this investigation we
chose not to make syntactical changes in state chart diagrams
and hence used an annotated approach in representing non-
functional duration constraints. Thus network link character-
istics and processing delay directives are specified by using
UML 2.0 collaboration diagrams. Both network link and
processing delay directives are specified using UML comment
symbols and a simple syntax is used for the purpose. Network
link characteristics which that can be specified include a
bandwidth, loss probability and delay distribution. Processing
delay directives are associated with active classes and are
mapped to packet sending and receiving delay in the generated
performance model.

In addition to presenting our methodology we have high-
lighted the architectural aspects of the proSPEX tool which
takes advantage of XML-based application integration and an
extendible simulation framework, namely Simmcast. We found
it necessary to extend the set of simulation primitives offered
by Simmcast in order to allow for dynamic node (or active
class) creation and termination. In addition, we developed
means of representing SDL signalling abstractions (e.g.pid,
child andparent) and means of encoding the system archicture.
We also found that the UML 2.0 communication abstractions,
offered by extending UML 2.0 with SDL actions, map readily
to Simmcast simulation primitives.

Future work with regard to the modelling of processing
delay would be to associate random delay with individual
actions or transitions (as is done in the objectGEODE approach
to performance analysis with SDL). In addition, the syntax
used for performance directives in comment symbols should
be in lign with that which is specified in the UML Profile for
Schedulability, Performance and Time.

REFERENCES

[BDM02] S Bernardi, S Donatelli, and J Merseguer. From uml sequence
diagrams and statecharts to analysable petri net models. In
Proceedings of the Third International Workshop on Software
and Performance, pages 35–45, New York, USA, 2002. ACM
Press.

[Bjo02] M Bjorkander. Graphical programming using uml and sdl.IEEE
Computer, 33(12):17–22, December 2002.

[BMSK95] M. Butow, M. Mestern, C. Schapiro, and P.S. Kritzinger. Sdl
performance evaluation of concurrent systems. Technical report,
Department of Computer Science, University of Cape Town,
1995.

[BMSK96] M. Butow, M. Mestern, C. Schapiro, and P.S. Kritzinger. Perfor-
mance modelling with the formal specification language sdl. In
IFIP TC6/6.1 International Conference on Formal Description
Techniques IX / Protocol Specification, Testing and Verification
XVI, volume 69, pages 213–228. Kluwer, 1996.

[BRJ98] Grady Booch, Jim Rumbaugh, and Ivar Jacobson.The Unified
Modeling Language User Guide. Addison-Wesley, 1998.

[Dor02] D. Dori. Why significant uml change is unlikely.Communica-
tions of the ACM, 45(1):82–85, January 2002.



[ea99] X Logean et. al. On applying formal techniques to the devel-
opment of hybrid services: Challenges and directions.IEEE
Communications Magazine, 37(7):132–138, July 1999.

[Gra02] S. Graf. Expression of time and duration constraints in sdl. In
Proceedings of the Second IEEE Sensor Array and Multichannel
Signal Processing Workshop, pages 1–16. IEEE, 2002.

[Gro02] Object Management Group. Uml profile for schedulability,
performance, and time specification. Object Management Group
Online Publication, 2002.

[Gro03] Object Management Group. Uml 2.0 superstructure specifica-
tion. Object Management Group Online Publication, August
2003.

[Hog89] Dieter Hogrefe. Estelle, LOTOS and SDL. Springer Verlag,
1989.

[Hol91] G Holzmann. Design and Validation of Computer Protocols.
Prentice Hall, 1991.

[Hol92] G.J. Holzmann. Protocol design: Redefining the state of the art.
IEEE Software, 9(1):17–22, January 1992.

[Kob02] Chris Kobryn. Will uml 2.0 be agile or awkward?Communica-
tions of the ACM, 45(1):107–110, January 2002.

[LQV01] L Lavazza, G Quaroni, and G Venturelli. Combining uml and
formal notations for modelling real-time systems. InProceedings
of the 8th European Software Engineering Conference, pages
196–206, New York, USA, 2001. ACM Press.

[MB02] H Muhammad and M Barcellos. Simulating group commu-
nication protocols through an object-oriented framework. In
Proceedings of the 35th Annual Simulation Symposium, pages
14–18, San Diego (New York), 2002. IEEE.

[MC01] W E McUmber and B H C Cheng. A general framework for
formalizing uml with formal languages. InProceedings of the
23rd international conference on Software engineering, pages
433–442. IEEE Computer Society, 2001.

[MDMC96] J. Hintelmann M. Diefenbruch and B. Muller-Clostermann.
Quest: Performance evaluation of sdl systems. InIFIP TC6/6.1
International Conference on Formal Description Techniques IX /
Protocol Specification, Testing and Verification XVI, volume 69,
pages 229–244. Kluwer, 1996.

[MHSZ96] J. Martins, J.P. Hubaux, T. Saydam, and S. Znaty. Integrating
performance evaluation and formal specification. InProceedings
of IEEE ICC ’96, pages 1803–1807. IEEE Press, 1996.

[Mic88] Sun Microsystems. Rfc 1050 - rpc: Remote procedure call
protocol specification. http://www.faqs.org, April 1988.

[Mil02] J. Miller. What uml should be.Communications of the ACM,
45(1):67–69, January 2002.

[MP00] B. Moller-Pedersen. Sdl combined with uml. InTelektronikk
4.2000, Languages for Telecommunication Applications, 2000.

[MTMC99] S Mitschele-Thiel and B Mller-Clostermann. Performance engi-
neering of sdl/msc systems.Computer Networks, 31(17):1801–
1815, June 1999.

[Pro04] The Apache Jakarta Project. The apache jakarta project: Velocity.
http://jakarta.apache.org/velocity/, 2004.

[PT00] J Parssinen and J Turunen. Patterns for protocol system archi-
tecture. InPattern Languages of Programs (PLoP) Conference,
2000.

[Rou] Jean-Luc Roux. Sdl performance analysis with objectgeode.
Telelogic White Paper.

[Sel03] Bran Selic. Brass bubbles: An overview of uml 2.0 (and mda).
Object Technology Slovakia (OTS) 2003, June 2003.

[SGW94] Bran Selic, G. Gullekson, and P.T. Ward.Real-Time Object-
Oriented Modeling. John Wiley & Sons, 1994.

[SK00] S Sircar and A Kott. Enterprise architecture analysis using an
architecture description language. InProceedings of DARPA
Symposium on Advances in Enterprise Control, 2000.

[Spi97] SDL* - An Annotated Specification Language for Engineering
multimedia Communication Systems, 1997.

[Ste98] M. Steppler. Performance analysis of communication systems
formally specified in sdl. InProceedings of the First Interna-
tional Workshop on Software and Performance (WOSP98), pages
49–62. ACM Press, 1998.


